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Automated program repair is an emerging technology which seeks to automatically rectify program errors and
vulnerabilities. Repair techniques are driven by a correctness criterion which is often in the form of a test-suite.
Such test-based repair may produce over-fitting patches, where the patches produced fail on tests outside the
test-suite driving the repair. In this work, we present a repair method which fixes program vulnerabilities
without the need for a voluminous test-suite. Given a vulnerability as evidenced by an exploit, the technique
extracts a constraint representing the vulnerability with the help of sanitizers. The extracted constraint serves
as a proof obligation which our synthesized patch should satisfy. The proof obligation is met by propagating
the extracted constraint to locations which are deemed to be "suitable" fix locations. An implementation of our
approach (EXTRACTFIX) on top of the KLEE symbolic execution engine shows its efficacy in fixing a wide range
of vulnerabilities taken from ManyBugs benchmark, real-world CVEs and Google’s Open-source-systems OSS
Fuzz framework. We believe that our work presents a way forward for the overfitting problem in program
repair, by generalizing observable hazards/vulnerabilities (as constraint) from a single failing test or exploit.
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1 INTRODUCTION

Automated program repair [28] is an emerging area for automated rectification of programming
errors. In the most commonly studied problem formulation, the goal is to find a (minimal) change to
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a given buggy program P to make it pass a test-suite T—i.e., test-suite driven program repair. As the
goal is to find change that merely passes the test-suite T, the automatically generated patch may
overfit the test data, meaning that the patched program P’ may still fail on program inputs/tests
outside of T [24, 47]. The problem is particularly dangerous when fixing software vulnerabilities.
If the correctness specification driving the repair of P is incomplete (such as a test-suite T)—the
automatically generated patch may not completely fix the vulnerability meaning that the patched
program is still vulnerable. It has been shown in the past that even for manually generated fixes,
9% of the fixes are incomplete or incorrect [62]. For automatically generated fixes of program
vulnerabilities, we need a stronger level of assurance about the quality of patches.

Automatically generating high-quality fixes is one of the key challenges in program repair
research today. Low-quality fixes that over-fit the given test suite result from weak specifications
driving the repair. The fundamental reason for the existence of over-fitting patches is that the
patch space is under-constrained due to the incomplete specification given by test suites [47].
The over-fitted patches may change program behaviors in an unexpected way, e.g. change the
original functionality. When fixing a crash or vulnerabilities, the patched program could fix the
crash/vulnerabilities on the given tests, but it could still be vulnerable on the inputs outside the
given test suite.

1.1 Overall Methodology

In this paper, we propose a general approach to combat the over-fitting problem in program
repair via symbolic reasoning, specifically for fixing security vulnerabilities. Our key insight is that
information about the underlying cause of vulnerability can be automatically extracted, and the
extracted information can then be used to guide Automated Program Repair (APR). The information
is extracted in the form of a constraint that all program inputs must satisfy at the location where
the vulnerability is witnessed. In order to avoid repeating the vulnerability, then, the goal of repair
is to ensure the constraint is always satisfied at the location of the vulnerability.

1.2 Challenges

Our constraint-driven program repair methodology involves several challenges that need to be
overcome.

o Constraint extraction: The first challenge (Constraint extraction) is to extract a crash-free constraint
or CFC from an observable crash/vulnerability. The observable program failure is a concrete
property violation when executing a failing test or exploit. In contrast, CFC should capture
the properties that all program inputs must satisfy at the crash location, in order to avoid the
vulnerability.

e Fix localization: Our second challenge lies in fix localization (FL). Fix localization finds one (or
more) suitable fix location(s). Typically, existing FL approaches, e.g. spectrum-based FL [43], rely
on a given high-quality test suite, which is not always available. Often, there is only one test in
the form of an exploit. So, it is a challenging task to infer fix locations with only one failing test.

e Constraint propagation: After we determine the crash-free constraint (CFC) and fix location,
guiding patch generation using the constraint is not straightforward because the fix location
could be different from the crash location. For instance, the following code shows a bug where
the source and destination of memcpy overlap !. The bug is witnessed at line 4, but the correct
patch was applied at line 1. We could extract constraint at the crash location (line 4) to ensure
source and destination do not overlap, however, the constraint cannot be directly used to guide
patch generation at fix location (line 1).

Thttp://www.cplusplus.com/reference/cstring/memcpy
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1 - for (i = 3; i < size / 2; i x= 2) // the correct fix location
+ for (i = 3; 1 <= size / 2; i *= 2)

2 memcpy (r + i, r, 1i);

3 if (i < size)

4 memcpy (r + i, r, size - i); // the crash location

Since fix location(s) could be different from the crash location, the extracted constraint must be
propagated and transformed to guide patch generation at fix location(s).

e Patch synthesis: The final challenge is to use program synthesis to generate candidate patches
that ensure that the constraint is satisfied for all possible inputs.

1.3 Tackling the challenges

To address the above challenges, our workflow begins with the detection of an exploitable vulnera-
bility in the form of a crash, i.e., unexpected program termination due to control flow reaching an
invalid state. With the help of sanitizers, such as AddressSanitizer (ASAN) [46] or UndefinedBe-
haviourSanitizer (UBSAN) [53], we could convert vulnerabilities into normal program crash; in the
rest of this paper, we generally regard a exploit as a failing test. After witnessing a crash in an ex-
ploit, we extract the crash-free constraint or CFC (first challenge) using a template-based approach.
According to pre-defined templates, a constraint representation of the violated condition—i.e., the
crash-free constraint—can then be extracted from either the program itself (e.g. user assertion fail-
ure), API documentation, or safety properties enforced by dynamic analysis tools such as sanitizers.
For example, a buffer overflow can be formalized as a violation of constraint:

access(buffer) < base(buffer) + size(buffer)

This constraint is extracted at run-time when the crash is witnessed and represents the precise
condition that all patched programs must satisfy in order to avoid repeating the same crash.

We address the second challenge (Fix localization) by examining program dependencies, instead
of purely relying on test suites. Specifically, we take as input one failing test, and use the crash
location as a starting point and find candidate fix locations using control/data dependency analysis.

Once the fix locations are determined, to solve the third challenge (Constraint propagation), we
propagate the extracted constraint backward from the crash location to one or more suitable fix
locations by calculating the weakest precondition.

To address the last challenge (Patch synthesis), we integrated the second-order program synthesis
with counterexample guided inductive synthesis. We synthesize a patch so that the weakest
precondition, the extension of crash-free constraint, cannot be violated, thereby guaranteeing that
the patched program cannot repeat the same crash, and thus resolving the vulnerability.

Our workflow allows the program repair system to decide between single-line and multi-line fixes
as shown by experiments. We instantiate the proposed approach in a prototype named EXTRACTFI1x.

1.4 Contributions of the paper
The contributions of this paper can be summarized as follows.

o Conceptual Contribution: We propose a technique for completely fixing security vulnerabilities
which alleviates the well-known overfitting problem in program repair [47]. This is important
since today, many security vulnerabilities once detected and reported as CVE remains un-fixed
for a significant period. The automated repair can thus reduce the exposure to these un-fixed
vulnerabilities.

o Technical Contribution: Our main insight is to extract symbolic constraints from violations in an
exploit trace witnessed by sanitizer. The constraint extraction from sanitizers is made possible
by automatically symbolizing program variables relevant to the crash. Our constraint-based
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program repair method has several technical novelties. First of all, we provide an effective
constraint/dependency based fix localization instead of relying on the widely used statistical fault
localization. Secondly, we are able to synthesize non-trivial patches at locations different from
the crash location, owing to having scalable constraint propagation. Last, we extend existing
second-order program synthesis methods to generate patches with minimal syntactic/semantic
changes.

o Utilitarian Contribution: We implement our security vulnerability repair approach in a tool
named EXTRACTFIX. We evaluate EXTRACTFIX on a wide range of vulnerabilities from ManyBugs
benchmark and real-world CVEs. Evaluation results show that EXTRACTFIX can generate more
correct patches than state-of-the-art automated program repair tools. The generated patches
can be found in https://extractfix.github.io.

2 OVERVIEW

For our purposes, a crash is broadly defined to be any program termination due to control flow
reaching certain illegal states where conditions/properties are violated. A crash can be caused
by the violation of an explicit user assertion (e.g., assert(C)), an implicit assertion enforced by
the operating-system (e.g., illegal memory access), or instrumented check inserted by sanitizers
to enforce some safety properties. Typical sanitizers, such as AddressSanitizer (ASAN) [46] and
UndefinedBehaviorSanitizer (UBSAN) [53], instrument the program with implicit assertions that
enforce additional properties, such as memory safety, type safety, integer overflows protection,
etc. If a sanitizer assertion is violated, the program will abort (i.e., “crash”), usually with an error
message indicating the problem. The underlying cause of a “crash” can be automatically extracted in
the form of a crash-free-constraint (CFC). The CFC represents the condition that should be satisfied at
the crashing location in order to avoid repeating the crash. For example, for a user assertion violation
(assert(()), the CFC is C itself, for a NULL-pointer de-reference on p the CFC is (p#0), and for an
array bounds overflow error on a[i] the CFC is (i<SIZE) where SIZE is the size of array a. If the
crashing program is patched so that the CFC is always satisfied at the crash location, then the same
crash cannot be repeated for any program input.

2.1 Workflow
Our basic workflow consists of several components/steps, including:

(1) Constraint Extraction. Given a program and a single input that exercises the crash, the first
step is to extract the “crash-free constraint” (CFC). The observable program crash is a concrete
property violation when executing a failing test or exploit, while CFC should capture the
properties for all possible inputs. The CFC is the symbolization or abstraction of the concrete
violations. We extract CFC according to predefined templates which formulate the underlying
cause of the defect.

(2) Fix Localization. Once the CFC is generated, one (or more) candidate fix location(s) will be
generated using a dependency-based fix localization algorithm. Unlike the widely used spectrum-
based fault localization (SBFL) [43], we take one failing test as input, and use the crash location
as a starting point and find candidate fix locations using control/data dependency analysis.

(3) Constraint Propagation. The CFC is a constraint over the program state at the crash location.
The CFC at the crash location is propagated to a CFC’ at a given fix location satisfying the
following Hoare triple:

{CFC’} P {CFC} (CFC-PROPAGATION)
Here, P represents the program between fix location and crash location. CFC’ is the least

restrictive (weakest) precondition that will guarantee the postcondition CFC [4]. Finding CFC’
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void fillp (char *r, size_t size ﬁ: compile + )
P ( i prog.c input | failing test
: size=13

riz] = bits & 255; (l)lconstraintextraction

r 3 5 CFC
_fmemey F 1, r, 1); @) fix size <= 2%
1 (1 < Slze) : . . localizatio (3)lpr0pagate
‘memcpy(r +1i, r, size - 1)‘; -
fix propagated | (4) patch
) location |k CFC' synthesis|i <= size/2
(a) Buggy code snippet. (b) ExTrACTFIX workflow overview.

Fig. 1. Workflow example from Coreutils

involves solving CFC-PrRoPAGATION. For multi-line repair, the approach is generalized and
propagation is applied to multiple fix locations.

(4) Patch Synthesis. Once the fix location and propagated CFC’ have been decided, the next step
is to generate patch candidates. Patch synthesis involves rewriting the fix location statement p
into an alternative f such that the following Hoare triple holds:

{true} [ p— f ]{CFC’} P {CFC} (CFC-REPAIR)

The generated patch is guaranteed to ensure that CFC’ is satisfied, meaning that the CFC
condition at the crash location cannot be violated in the patched program.

Workflow Example. To illustrate our workflow, we consider an example bug from Coreutils. The
buggy code snippet is shown in Figure 1a. Here, the snippet attempts to fill a buffer r with a pattern
determined by variable bits using repeated calls to memcpy. The length of each memcpy operation is
doubled inside the for-loop, and the final memcpy handles any remaining unfilled space in the buffer.
Unfortunately, the code snippet contains a bug 2. For certain inputs (e.g., size=13), the source and
destination regions for the final memcpy will overlap— an undefined behaviour under the memcpy
specification. This bug may cause a program crash on some platforms. Specifically, when size=13,
the for-loop will terminate in the second iteration with i=6 and size/2=6 (integer division). Then, at
line 7, the source and destination of memcpy overlap because r+(13—6)>r+6. Using an appropriate
sanitizer (UBSAN), this program will crash on the final memcpy call.

Figure 1b shows the overall workflow of our approach. We start with the single crashing input
(size=13) that triggers the crash on line 7 (highlighted). Step (1) generates the CFC corresponding
to the crash according to a predefined template. The CFC template (shown in Section 4.1) of
memcpy(p, g, s) is defined as p+s < q V g+s < p. In this case, CFC is

(r+i+size—i<r Vr+size—i<r+i) = (size <0V size<2xi)

Since size is an unsigned integer (size_t) value, we only focus on the second clause size<2+*i in this
example. Step (2) determines candidate fix locations. One promising fix location is the for-condition
on line 4 (highlighted) since there exists a control dependency with an assignment (i *= 2, line 4)
that has a data dependency with the crash location. Step (3) propagates the CFC to the fix location
along all feasible paths. In this case, the CFC is propagated along one path with path constraint
i<size, and CFC remains unmodified. Step (4) synthesizes a patch f to replace the for-condition.
To completely fix the bug, we should ensure size<2xi is always satisfied after applying f. In this
case, the synthesizer gives i <= size/2. Thus, the program can be patched as follows:

Zhttps://debbugs.gnu.org/cgi/bugreport.cgi?bug=26545
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- for (i = 3; i <size/ 2; i *=2)

+ for (i = 3; i <=size / 2; i *=2)

The resulting patch is equivalent to the developer patch. In contrast, test-driven program repair
approaches may produce overfitting patches. For example, the following patch generated by
Fix2Fit [11] fixes the bug for size=13, but does not generalize to other crashing inputs, e.g. size=7.

+ for (i1 =3; i<size/ 2 || 1==26; 1 *=2)

3 BACKGROUND ON SYNTHESIS

Given a set of specifications, program synthesis generates a program satisfying the specifications.
Program synthesis is formalized to be a second-order constraint solving problem in the recent work
on SE-ESOC [35]. We build our program synthesizer on top of the approach proposed by SE-ESOC.
Given a set of components C, this approach first constructs a set of terms and then represents
them as a tree. Specifically, each leaf of the tree corresponds to components without input, and
an intermediate node has as many subnodes as the maximal number of inputs of a component.
Flgure 2 shows a tree with three nodes, and each node is constructed using four components ("x",

v, -"). The leaf nodes 2 and 3 do not have subnodes, while node 1 has two subnodes since
"+" and "-" takes two inputs. For each node i with sub-node {iy,iy,...,ix}, its output is

"

component +
represented as out;, and its inputs is represented by {out; ,out;, .....,out;, } (the output of subnodes). In
addition, boolean variables s{ is the j-th selector of node i, which means j-th component is used
in this node, F; represents the semantics of j-th component, and N is the number of nodes in the
tree. For the tree in Figure 2, with {s3, s;, s2} as true, the output of the root node will be x + y. The
well-formedness constraint is encoded as ¢, p ‘= @node N Pchoice> Such that:

N [C|
Prode = /\ (sj = (out; = F; (outil,outiz,...,outik))) 1)
i=1 j=1
Ochoice = /\exactlyOne (s},sf,...,sic) (2)
i=1
out,
I O
Nodel i
X Y] L]
out, T - [~ outs
\
I T I
E2REAREIRER] x| (Y +]| |-
e f-g----- F-F-- R it F-F---- ==
Node 2 Node 3
Fig. 2. Encoding with four components ("x", "y", "+", "-") and three nodes.

For a node, ¢4, describes the semantic relations of each node between its output and inputs,
where the inputs are the outputs of its sub-nodes. ¢poice restricts that only exactly one component
is selected inside each node. Using the above encoding, the output of the root node represents a
function f that connects inputs and outputs of components. Finally, given n input-output pairs
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Table 1. Basic crash classes, crash expressions/statements, and the corresponding Crash-Free Constraint
CFC-template. We consider seven types of crash: explicit developer assertion violation, sanitizer-induced
crash such as buffer overflows/underflows, integer overflows, APl constraint violation.

\ Class \ Template ID \ Expression \ CFC Template \
developer T assert(C) C
p+sizeof(*p) < base(p)+size(p)
T, *p
|l _|pzbase
- T aopb MIN < a op b < MAX (over Z)
sanifizer - - — &+ - — —|- - = — 2 — - o - — -~ — % — — — — —— — — % — — 1
T | memepy(p.g;s) [p+s<qvatss<p
L jrplorp=0) jp#0
Ts a/b(forb=0) | b#0

{(ak, Bx) | 1 < k < n}, the synthesis goal is to generate function f by traversing the abstract tree
and satisfying @correct, Where

Pcorrect = /\ ﬁk = f(ak) (3)
k=1

4 METHODOLOGY

Our workflow for program repair involves constraint extraction, propagation, and patch synthesis.
In this section, we discuss each step in more details.

4.1 Crash-Free Constraint Extraction

Our workflow begins with a vulnerable program and a single crashing input. The first step is to
extract both (1) the crashing location (e.g., filename/lineno), and (2) the crash-free constraint (CFC)
representing the condition that was violated and the underlying cause of the crash. For (1), the crash
location is extracted according to debugging information when the crash is triggered, meaning
that the program must be compiled with debugging enabled (-g). For (2), the CFC extraction is
template-based, and is instantiated from the crashing expression/statement. Our repair technique
currently considers crashes due to:

(1) Developer-induced crashes, i.e., assert(C) failure;
(2) Sanitizer-induced crashes caused by the program violating a sanitizer-enforced safety property
(e.g., memory safety, type safety, etc.);

A summary of the different kinds of crashes and the corresponding CFC-templates are shown in
Table 1. Here, the crash expression is matched against the corresponding crashing expression/state-
ment from the buggy program, and the CFC-template is instantiated accordingly. We choose those
templates because they cover the common errors and vulnerabilities in C/C++ programs, e.g. null
pointer dereference, integer/buffer overflow. In this paper, we restrict to fix the bugs supported by
these templates. Our tool can also fix other kinds of bugs by extending the templates.

For Example 2.1, the crashing statement memcpy(r+1i, r, size—i) is matched against the template
from Table 1 using the substitution p=r+i, g=r, and s=size—i. This yields the following CFC
after substitution and simplification:

(r+i+size—i<rVr+size—i<r+i) = (size <0V size<2xi)

We now discuss the CFC generation step in more details.
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4.1.1 User-Assertion. The CFC for user assertions is relatively straightforward to generate. Assum-
ing the crash is caused by a user assertion failure assert(C), the CFC can be read directly from the
assertion statement itself, i.e., CFC=C.

4.1.2 Sanitizer Constraint Extraction. For our purposes, a sanitizer is any dynamic analysis tool
that instruments/modifies the program with additional runtime checks enforcing certain safety
properties, such as memory safety, preventing integer overflows or other undefined behavior
avoidance. Typically, sanitizers insert instrumented checks/assertions before relevant operations.
For example, as shown in the following figure, the instrumentation (left part) of most spatial
memory safety sanitizers (a.k.a., bounds-check sanitizers) track object bounds information (i.e., the
size and base address of each allocated object) using a disjoint metadata store or related method. At
run-time (right part of the following figure), this metadata is used to look up the object bounds
corresponding to the dereferenced pointer, and this pointer (access) is checked against these bounds
(base+size). If the instrumented check fails, the program is terminated, i.e., “crashes”. Crashes can

Instrumentation-time ‘Run-time
| access access< +57
Le v
object |meta-data object |meta-data
Memory space Memory space

be caused by hardware failure such as NULL-pointer dereference and divide-by-zero are detected
using an appropriate santizer or signal handler, e.g., SIGSEGV with si_addr=0 and SIGFPE with
si_code=FPE_INTDIV respectively. The corresponding CFC ensures that the crashing symbolic
pointer/divisor is not zero.

Sanitizers can only detect “crashes” on concrete program state, e.g. specific values of size and
base on a certain test. We then symbolize the safety condition that sanitizer enforces by mapping
the concrete state back to variables/memory relevant to the crash. For the example in Figure 1a,
a sanitizer detects source/destination memory regions overlap when size=13. We then generate
CFC by mapping the concrete value of source/destination back to program variables r and r+i,
respectively. To map a concrete crashing state back to symbolized variables, we extend the meta-
data by also restoring the corresponding program variable information (e.g. variable name, type)
representing size and base. When the crash is detected, we can simply construct the crash-free
constraints using the symbolized program states (program variables). However, in some cases, we
may fail to symbolize constraints because some variables used to construct CFC are not accessible
at the crashing points, i.e. the variables stored in metadata have already been killed at the crashing
points. In the general case, we could symbolize the CFC using an extended program state.

Sanitizer Constraint Language. Some sanitizer-inserted instrumented checks enforce conditions
over an extended state that is managed by a runtime library or additional instrumentation. This
extended state is not part of the original program itself. As such, the sanitizer assertion is over an
extended program state that includes the sanitizer runtime. To handle sanitizer-extended state, we
allow the generated CFC to include functions/types/variables that do not necessarily appear in
the original program. For example, in the case of bounds-check sanitizers, we introduce two new
abstract functions:

- base(p): the base address of the object referenced by p; and
- size(p): the size (in bytes) of the object referenced by p.

The generated CFC will be over these extended functions (see Table 1). Another example is integer-
overflow sanitizers, where the generated CFC (e.g., a+b < MAX) is over arbitrary precision integers
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ALGORITHM 1: Fix localization algorithm
Input: A crash location (crashLoc) and an Inter-procedure Control Flow Graph (ICFG)
Output: A set of candidate fix locations (fixLocs)
fixLocs := {crashLoc};
repeat
fixLocsPrev := fixLocs;
foreach fixLoc € fixLocsPrev, loc € ICFG — FixLocsPrev do
if depends(loc, fixLoc) A dominates(CFG, loc, crashLoc) then
‘ fixLocs := fixLocs U {loc};
end

end
until fixLocsPrev = fixLocs;
rFixLocs := rank (fixLocs);
return rFixLocs;

(Z) rather than the original 32bit integer type. For the purpose of CFC-generation, we extract the
extended-language constraints “as-is”, and defer further simplification/handling to the latter stages
of our workflow.

4.2 Dependency-based Fix Localization

Once the crash location and CFC have been determined, the next step is to decide one (or more) fix
location(s) where the patch(es) are to be applied. Typically, existing FL approaches, e.g. spectrum-
based FL [43], find candidate fix locations by analyzing the execution trace of passing and failing
tests. The FL results depend on the quality of the tests, but high-quality tests are not always
available. Unlike traditional FL approaches, we make a minimal assumption that only one failing
test (exploit) is available, which is a very common scenario when security vulnerabilities are found.

The main intuition of our dependency-based fix localization is that the fix location(s) ought
to exhibit a control or data-dependency with the crash location, such that, the statement at fix
location can influence the truth value of the CFC. We are also looking for fix location(s) which
appear on the execution path of the crashing test. As a practical realization of these intuitions, our
repair technnique uses the crash location as the starting point and performs backward control and
data-dependency analysis along with crashing path. Algorithm 1 summarizes the fix localization
algorithm to decide candidate fix locations. Here, the algorithm takes as input an Inter-procedure
Control Flow Graph (ICFG) and a crash location (crashLoc). Since the ICFG may be large in practice,
partial ICFG is constructed by considering locations visited by the failing test (exploit) and depen-
dency analysis is performed with the crashing statement as the slicing criterion. The algorithm
iteratively builds a set of potential fix locations (fixLocs) by adding nodes that (1) have a (transitive)
dependency with the crash location, and (2) dominate the crash location. Finally, the algorithm
generates a sequence of fix location candidates, which are ranked according to the distance to the
crash location.

Dependency Closure. Our algorithm also considers the transitive closure of static data and control
dependencies [48] of the crashing statement to compute potential fix locations. Data dependencies
are determined using the standard def-use-chain traversal algorithm over a Single Static Assignment
(SSA) representation of the program. We detect control dependencies using the standard Control
Dependence Graph (CDG) [5] program analysis as part of the LLVM compiler infrastructure. Con-
sidering Figure 1a once more, the for-condition (line 4) is a control dependency on the assignment
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statement (1 *= 2, also line 4), and the crash location (line 7) is data dependent on this assignment.
Thus, the for-condition is a potential fix location.

Crashing Path and Dominance. The set of all (transitive) data and control dependencies of the
crash location can be quite large, leading to many potential fix locations. To reduce the number of
potential fix locations, we restrict the fix location(s) should exist somewhere along the concrete
path belonging to the original crashing test case. Furthermore, in order to guarantee that the
patched program satisfies the CFC, our fix localization algorithm only considers statements that
dominate the crash location—i.e, all paths from the entry point to the crash location must also pass
through the fix location, as illustrated in Figure 3. Considering Example 2.1, the for-condition (line
4) dominates the crash location, since all paths from the entry will visit the for-condition at least
once. There are usually multiple nodes that dominate the crash location in real-world programs,
meaning there are multiple potential fix locations. Note that, there are always at least two nodes
that dominate the crash location: the entry point, and the crash location itself.

4.3 Crash-Free Constraint Propagation

The weakest precondition of a formula ¢ is the least restrictive precondition that will guarantee
¢ [4]. We consider the problem of backward propagation as finding the weakest precondition CFC’
at fix location [ that necessarily drives the program to the crash location and satisfies CFC at the
crash location. As shown in [16] (Theorem 9), for all deterministic programs P and any desired
post-condition Q: wp(P, Q)=fwd(P, Q), where wp represents the weakest precondition that drives
program P to satisfy Q, while fwd is the result generated by forward symbolically executing P
from the first statement to the last and substituting the used variables in Q with symbolic state of
variables.

ExampLE 4.1. Consider the following program P: (x = x + x;x = x + X; X = x + x) and post-condition
Q: x < 8, the weakest precondition to guarantee Q is wp(P, Q) = {x < 1}. Similarly, if we set x to be
a symbolic variable and symbolically execute P from the beginning, we would get 8x < 8. That is,

fwd(P,Q) = {x < 1}.

In this paper, we use forward symbolic execution to calculate the weakest precondition. Given
a fix location I/, crash location ¢, and CFC, we perform symbolic execution between [ and ¢, and
calculate the weakest precondition CFC’ at I. Our symbolic execution starts concrete execution with
a concrete input ¢ until the fix location I. The concrete input ¢ can be the exploit of the vulnerability,
or any test that can drive the program to I. From the fix location, we insert symbolic variables and
start symbolic execution to explore all the paths II from fix location [ to crash location c.

Symbolic Variable Insertion. At fix location, existing semantics-based repair techniques, e.g. Sem-
fix [41], Angelix [38] and [35], represent the to-be-repaired expression as (either a first-order or a
second-order) symbolic variable. Symbolic execution captures the constraint of passing a given test
suite T by exploring alternate paths from the fix location along which the execution of T could
be driven in the fixed program. In contrast, in our approach, symbolic execution computes the
weakest pre-condition of the crash-free constraint CFC, by exploring all paths between fix location
and crash location. We apply the following transformation schemes to introduce second-order
symbolic variable p:

e changing the right-hand side of an assignment:

x:=E; x:=p(vg,...,0);
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crash location

Fig. 3. lllustration of the fix localization algorithm. The algorithm attempts to find a node (fix location) that
(1) is a dependency of, and (2) dominates the (crash location). All paths from the entry point to the crash
location must pass through the fix location. There can be more than one path (P;) between the fix and crash
locations. It is allowable that some paths, including loops, from the fix location do not pass through the crash
location (Pysper)-

e changing a condition:

if(E){...} = if(p(vr,....,on){. ..}
e adding an if-guard:

S;=if(p(or, ..., on){S; }
e adding an if-return:
insert : if (p(vy, ..., vn)){return C;}

where S is statement, E is expression, C is constant and vy, . . ., v, are the live variables at the fix
location. We use if-return transformation only if the others fail to generate a correct patch, and
the error handling code C is generated using Talos [14]. Apart from generating a (second-order)
symbolic variable p at the fix location (to capture the to-be-synthesized expression) we also set the
live variables V (on which CFC is dependent) as symbolic variables. We might introduce multiple
symbolic variables. If a variable v at the fix location may affect the truth value of CFC at the
crash location, we will set v as a symbolic variable. This strategy introduces a minimal number
of symbolic variables while ensuring that all relevant paths between fix and crash location are
explored. With these symbolic variables, we can explore and navigate the paths between fix and
crash location.

Symbolic execution scope. To avoid exploring irrelevant paths, all the paths that never reach crash
location, e.g. Pysher in Figure 3, are terminated early (whether a path can reach ¢ is determined by
analyzing control flow graph). With the help of symbolic variable injection and early termination,
the explosion of paths is reduced. Furthermore, since fix locations are usually close to the crash
location, we can further alleviate the path explosion problem which is common in symbolic
execution.

Constraint collection. After symbolic exploration, we collect the path constraints pc; for each path
7; € II (all feasible path from [ to c). Besides, following each 7, all the variables used in CFC can
be represented using the symbolic variables (V and p). By replacing the elements in CFC with the
symbolic representations of V and p, we rewrite CFC as CFC]. Then, pc; = CFC] will be exactly
the same as the constraint by backward propagating CFC from crash location to fix location along
path 7;. Consider the following program

input x, i; if(i>0) y=x+1; else y=x—1; output y;
Suppose the CFC is (y > 5), along the if-then branch, we will get the constraint (i>0 = x + 1 > 5).
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Constraint Simplification (Optional). The propagated constraints may still contain extended sanitizer-
supplied functions (e.g., base(p)/size(p)) or types (e.g., Z for integer overflow). There are two basic
approaches to handling the extended constraint language: (1) Synthesize the patch “as-is”. If
necessary, extra functionality can be supplied using a suitable runtime library; or (2) translate the
extended constraints into the native language if possible.

Approach (1) is the most general. For example, runtime implementations of the base(p)/size(p)
are available using a suitable library, meaning these functions can be used in a patch. The downside
is that this introduces an additional dependency on the patched program, which may be undesirable
for some applications. The alternative (2) approach is to rewrite the extended constraints back into
the native language if possible. For example, using a simple static analysis, our tool searches for a
dominating CFG node where the object associated to p is first allocated, e.g., ptr=malloc(len). If
such a node is found, then our tool can substitute base(p)=ptr and size(p)=Ilen. This approach is
less general than (1) since it depends on a suitable substitution to be found.

Note that the weakest precondition calculation inherits the limitation(s) of how symbolic ex-
ecution is performed. For instance, we may generate incomplete weakest preconditions if there
are loops between fixing location and crash location. In our setting, we also inherit the solution
from symbolic execution by adding a bound to the number of loop iterations, which may result in
incorrect patches as shown in Section 5.

4.4 Patch Synthesis

After backward propagation of crash-free constraints, patch synthesis is used to rewrite the state-
ment at fix location and guarantee:

{true}[ p = f {CFC'}

Although our reasoning is performed on a partial program (from fix to crash location), the synthe-
sized patch will be also effective for the whole program, because the precondition (true) is applied.
Once {true}[p — f]{CFC’} is satisfied, CFC’ is guaranteed to hold under any context.

Instead of satisfying input-output relations as shown in Equation 3, the synthesizer is used to
produce a patch satisfying a certain constraint. Suppose II is the set of feasible paths between fix
and crash location, for each path 7; € II, the generated patch f should imply CFC/ under all input

space. Then, we change the definition of ¢ e defined in Section 3 to:
|
Q@correct = /\ ((P = f(V) /\ch) = CFC_; (4)
j=1
where f represents the to-be-synthesized function and V is the set of variables used by f. For the
example 2.1, @coprecr Will be:

Qeorrect = (p = f(size, i) A =p A i < size) = size < i 2

Since f is a function and the implication should hold for all inputs, @correct is actually a second-
order formula. To solve this formula, EXTRACTFIX uses the idea of second-order solver [35] to convert
@correct t0 a first-order formula, and then uses counter-example guided inductive synthesis (CEGIS) [17]
to find proper patches. By synthesizing f satisfying ¢correct, We can handle all bug-triggering inputs
that violate CFC’, hence CFC.

Though the generated patch makes CFC hold, we may still have a wide choice of candidate
patches. For fixing the bug in example 2.1, several patches satisfying the @correc: (equation 4) could
be generated, such as {1,i < size/2}. Obviously, the second one is more likely to be correct. To
further improve the quality of patches, the intuition is that the correct patch should be similar,
both syntactically and semantically, with the original program. To generate “similar” patches,
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ALGORITHM 2: Extension of second-order synthesizer
Input: The original buggy expression e, the constraint ¢@coprect
Output: A patch f which satisfies @correct
hard := Prfps
soft = @syn ;
patches := 0 ;
while |patches| < N and (timeout not reached) do
fe := pMaxSMT (hard, soft) ;
I:= SMT (=~@correct[f = fe]) s
if I # None then
‘ hard := hard A @correct[V > 1] 5
else
‘ patches := patches U {fc} ;
end

end
return semSelect (patches) ;

ExTRACTFIX extends the second-order solver proposed by Mechtaev et al. by further considering
the distance between the patched and original program.

The overall workflow of our synthesizer is shown in Algorithm 2, which takes as input the
suspicious expression e and @corect, and generates a patch f. EXTRACTFIX first generates a patch
candidate by solving combined hard and soft constraints using MaxSMT[9] (line 5 of Algorithm
2). The hard constraint is initialized as ¢.,f, (refer section 3), which ensures the candidate is well-
formed. The soft constraint ¢, formulates the syntax distance between buggy expression e and
candidate patch. More formally, we build abstract tree T, for e, and T, for the patch candidate, and

define
|T.|

Psyn = U {Tf == Tf} 5)
k=1

where TF (T¥) denotes the k-th node of tree T,(T.). MaxSMT constructs a patch candidate f,
which strictly satisfies the hard constraint, and satisfies the maximum number of soft constraints
(shortest distance). The candidate f is then validated by Satisfiability Modulo Theories (SMT)
solver [6] to check whether an input that violates @correc: €xists (line 6). If such a counter-example
I exists (line 7-8), the counter-example I is first encoded into first-order logic and then added
into the hard constraint. Consider the example shown in Figure 1a, in the first iteration, assume
fe = Ai. Asize. i<size/2 , then

Qcorrect = (p = (Ai. Asize. i < size[2) A
—-p(i, size) A i < size) = size < ix*2
is violated when i = 6 and size = 13. Therefore, we add
(p=fA=p(6,13)A6<13) =13 < 12

i.e. f(6,13) = true, into the hard constraints. With the refined hard constraints, the candidate f,
generated in the next iteration will ensure @cres must be satisfied under I, i.e. f.(6,13) = true.
Eventually, a plausible patch f; is thereby generated, which will be added into the patches list (line
10). The process continues until timeout is reached or we find N plausible patches, where timeout
and N are defined by users.
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The patch synthesis of ExtractFix is built on top of SE-ESOC [35]. The difference with SE-ESOC
is two-fold. First, we introduce a set of soft constraints (Equation 5) to formulate the distance
between original expression and patch candidates. Such that, we can generate patches that are
syntactically similar to the original program. Second, SE-ESOC is designed to solve a problem
with existential quantifiers, i.e., generate patches to pass existing tests. In contrast, the synthesis
in EXTRACTFIX generates patches that fix the bug for all the valid inputs. Thus, we integrate
counterexample guided inductive synthesis into SE-ESOC to make it support solving problems
with universal quantifiers, i.e., generate patches to fix the bug under all input space.

Among N plausible patches, the most likely to be the correct one is selected according to its
semantic distance to the origin buggy expression e (semSelect line 13). Specifically, we (1) generate
a set of inputs In that can distinguish plausible patches in terms of their semantics (2) for each
in € In, calculate the values of each plausible patch and expression e (3) calculate the value distance
between each patch with e (4) select the patch with the shortest distance.

4.5 Multiple-line Fix

The proposed work-flow can be easily extended to support bug-fixing in multiple locations. Fix
localization can be generalized as a set of nodes that collectively dominate the crash location, i.e.,
all paths must go through one of the nodes from the set. Suppose we are introducing patches at

location {l, . . ., I, }, when propagating CFC, multiple second-order variables {p, . . ., p, } are intro-
duced to represent the to-be-synthesized expressions at {I;, ..., [,}, respectively. Correspondingly,
the generated CFC’ will involve multiple second-order variables {p1, ..., pn}. Then, the goal of
synthesizer is to generate a set of function { fi, ..., f,} to satisfy:
(11| n
Pcorrect = /\ (( /\ (pi = fz(Vl)) /\PCj) = CFCJ/' (6)
j=1 \ =1

5 EVALUATION

We evaluate the effectiveness and efficiency of EXTRACTFIx and answer the following research
questions.

RQ1 What is the overall effectiveness of EXTRACTFIX in fixing vulnerabilities?

RQ2 Compared with state-of-the-art techniques, can EXTRACTF1x alleviate the overfitting problem
in automated program repair?

RQ3 What is the efficiency of EXTRACTFIX in generating patches?

5.1 Implementation

We have implemented our approach in a tool named ExTRACTF1X, whose architecture is shown in
Figure 4. EXTRACTFIX takes as input the vulnerable program, exploit (test case) and produces patches.
EXTRACTFIX is composed of four main components: constraint extractor, fix locator, propagation
engine and patch synthesizer.

Constraint extractor takes as inputs the vulnerable program and exploit, generates a crashing
location, and a crash-free constraint CFC. The constraint extractor is mainly implemented on top
of sanitizers: Lowfat [7, 8] for buffer overflow/underflow and UBSAN [53] for integer overflow,
null pointer dereference and etc. Although our prototype supports a specific set of defects, other
bugs can be supported by integrating new sanitizers and corresponding templates. Once a crash is
detected, the concrete crash condition is symbolized into crash-free constraint CFC by mapping the
concrete value back to program variables. To enable the mapping, the programs should be compiled
using clang with the debug option.
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Fig. 4. The architecture of ExTRACTFIx.

Fix locator takes as inputs the buggy program and crash information, and produces a set of
ranked fix location candidates. The fix locator is a static analysis tool and is implemented as an
LLVM pass . We implement it on top of LLVM because LLVM provides a set of interfaces to
generate control flow graphs and data dependency graphs.

Propagation engine is built on top of KLEE [2]. For the purpose of generating the weakest
precondition, we modify the path exploration of KLEE in the following two aspects. First, we
change the constraint collection by only considering the path constraints between fix and crash
location. Second, we early terminate the paths that cannot reach a crash location. The execution
scope is controlled by Controller.

Patch synthesizer is a second-order synthesizer which is implemented according to the ap-
proach proposed in [35]. Besides, EXTRACTFIx implements three new features: (1) taking the CFC
as correctness criterion (2) combining with counter-example guided synthesis and (3) taking into
account the distance between patches and original buggy expression. In our implementation of the
synthesizer, we use Z3 [6] as a backend SMT solver.

5.2 Experimental Setup

Table 2. The subject programs and their statistics

Program #Vul Loc Description

Libtiff 11 81K library for processing TIFF files
a set of programming tools for creating

Binutils 2 98K ; .

and managing binary programs
Libxml2 5 299K XML C parser and toolkit
Libjpeg 4 58K C library for manipulating JPEG files
FFmpeg 2 617K library for processing audio & video
Jasper 2 29K library for coding & manipulating image
Coreutil 4 78K GNU core utilities
Total 30 - —

We evaluate our approach on two sets of benchmarks: ManyBugs [26] and our own constructed
benchmark. ManyBugs is a C program benchmark suite that is widely used to evaluate automated
program repair techniques, such as GenProg [27], Prophet [33] and Angelix [38]. Since we are

SLLVM Pass: http://llvm.org/docs/WritingAnLLVMPass.html
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focusing on vulnerabilities in this paper, we only select bugs that relate to vulnerabilities as our
subjects. We therefore select our subjects based on the following criteria:

(1) we only consider bugs related to vulnerabilities, including segmentation fault, buffer over-
flow/underflow, integer overflow;

(2) the target application can be compiled into LLVM [22] bitcode and executed by KLEE [2];

(3) the target vulnerability can be reproduced in our environment.

We omit two applications of the benchmark (python and fbc) because we could not run these
subjects on KLEE. In total, we select 26 defects from three applications: Libtiff, Lighttd, and Php.

Besides ManyBugs, we also constructed an additional vulnerability benchmark suite from a set
of popular applications by searching the online databases [50-52]. Those databases provide a list
of entries, and each of them contains an identification number, a short description of the bug and
optional reproducer (i.e. exploit). We obtain our candidate bugs by searching for the bug types
(including buffer-overflow/underflow, integer-overflow, divide-by-zero, null pointer, and developer
assertion) that our prototype supports. We just consider the bugs reported after 2010 because the
earlier bugs are harder to reproduce. Then, we randomly select and manually filter the subjects
based on the following four criteria:

(1) exploit(s) to trigger the vulnerability is available or exploit(s) can be constructed from the
available information;

(2) the target vulnerability has already been fixed by developers so that we have the ground
truth on how to fix it;

(3) the target application can be compiled into LLVM [22] bitcode and executed by KLEE [2];

(4) the target vulnerability can be reproduced in our environment.

Finally, 30 unique vulnerabilities across seven applications are selected as our benchmark, which
includes 16 buffer-overflow/underflow, 4 integer-overflow, 5 divide-by-zero, 3 API assertion, and
2 null pointer dereference. The exploits, as well as the instructions to reproduce the bugs, are
obtained from blogs of researchers, bug reports, exploit databases or the attachments along with
patch commit. The selected subjects are across seven applications, and their brief descriptions are
given in table 2. Column Loc represents their lines of source code, while column #Vul shows the
number of selected vulnerabilities for each application. The main difference between ManyBugs
and our own constructed benchmark is that the subjects from ManyBugs include a huge number of
test cases, while the subjects in our benchmark only have an exploit and few developer test cases.
Note that EXTRACTFIX is designed for working with a few cases.

The experiment is directly conducted on these vulnerable applications on a device with Intel
Xeon CPU E5-2660 2.00GHz process (56 cores) 64G memory and 16.04 Ubuntu. We set timeout for
the symbolic execution and program synthesis as 30 minutes each. Note that, we do not support
parallelism yet. All the results are generated using sequential algorithms.

5.3 Experimental Results

5.3.1 How effective is EXTRACTFIx in fixing vulnerabilities?

To answer RQ1, we evaluate the effectiveness of EXTRACTFIxX in the following three aspects: 1)
extracting CFC 2) finding fix locations and 3) generating patches to fix vulnerabilities. Recall that
the vulnerabilities are formalized as violations of constraints, we first evaluate whether EXTRACTFIX
can successfully extract such constraints for the given vulnerabilities. For the generated constraint,
we generate the ground truth of correctness by manually analyzing the source code and root cause
of the vulnerability. For instance, we manually analyze the condition that a buffer overflow can be
triggered, and check the correctness of CFC. Given CFC, we then evaluate whether ExTrACTFIX
can find the correct fix locations by referring to the developer patches. As our dependency-based
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Table 3. Evaluation results of ExTRACTFix. The first part (the first three rows) show the results on ManyBugs
benchmark, and the second part present the results on our benchmark.

Application \ Defects \ CFC FL(T1/T3) Patches Correct Patches \ Avg. Time (m)

Libtiff* 5 3 2/3 3 2 4.32
Lighttd 3 2 1/2 2 1 7.50
Php 18 14 6/10 14 9 11.11
Libtiff* 11 9 7/8 9 6 5.64
Binutils 2 2 1/1 2 1 26.28
Libxml 5 4 3/3 4 2 13.80
Libjpeg 4 3 1/2 3 2 12.01
FFmpeg 2 2 1/1 2 2 8.23
Jasper 2 2 1/1 2 1 1.07
Coreutil 4 2 1/2 2 2 5.17
Total 56 43 24/33 43 28 9.46

* Both Manybugs and our benchmark include the Libtiff program, but the defects in different
benchmarks do not overlap.

fix localization creates a set of ranked candidate fix locations, we retrieve how many candidates
we need to inspect until we hit the correct one. A fix location [ is correct if we can generate
semantically equivalent patches at [ with developer patches. Given CFC and fix location candidates,
we then evaluate the effectiveness of EXTRACTFIX in generating fixes, and compare with existing
automated program repair tools: Prophet [33], Angelix [38] and Fix2Fit [11]. Prophet is a search-
based automated program repair tool, which ranks patch candidates using a machine learning-based
approach. In our experiment, we are using the pre-trained model released by the authors of Prophet.
Angelix is a state-of-the-art semantic program repair tool, which extracts patch constraints from
test cases and then directly synthesizes a patch. Fix2Fit proposes to generate additional test cases
to filter out the over-fitted patches. Since Prophet and Fix2Fit are all test-driven program repair
tools, we run all those tools with test cases which are composed of 1) exploit that can trigger the
vulnerability and 2) available developer tests. Note that, except for one exploit, ExTRACTFIX does
not need the additional test. As optional post-processing, developer tests could be used to verify the
correctness of patches generated by EXTRACTF1X. All the generated CFC, fix locations and patches
can be found in https://extractfix.github.io

Table 3 shows our evaluation results. The first part (first three rows) of Table 3 shows the results
on ManyBugs benchmark and the second part gives the results on our own constructed subject. The
effectiveness of ExTRACTFIX is shown in columns 3-5, where CFC shows the number of correctly
generated crash-free constraints in each application. FL represents fix localization results in a form
of (T1/T3), where T1 is the number of bugs whose correct fix location is ranked first, and T3 is the
number of bugs whose correct fix location is ranked in the top three candidates. Patched shows the
number of fixed programs that pass the (single) failure-inducing test. The detailed evaluation result
of each defect can be found in Table 4 (ManyBugs) and Table 5 (our benchmark).

Crash-free constraint extraction. Out of 56 vulnerabilities, EXTRACTFIX can successfully extract
correct constraints for 43 defects, and all of them are correct according to our manual investigation.
The results show that our constraint extraction can effectively extract crash-free-constraints,
especially for integer overflow, divide-by-zero and developer assertions. We cannot extract correct
constraint for some buffer overflow vulnerabilities and null pointer dereferences because the
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Table 4. Patches generated by EXTRACTFIXx on ManyBugs Benchmark. Column Sanitizer represents the
sanitizer used by each defects, where APISan is a sanitizer implemented by ourselves to detect violation of
API specification, e.g. the destination and source parameters should not overlap in memcpy. Column Template
shows the template id (defined in Table 1) used by each vulnerability, while column CFC represents whether
we can extract correct crash-free constraints. Column FL is the fault localization results, where L-N represents
that we need to try N fix location candidates until find the correct one. Column Patched shows whether
we can generate patches to pass the given tests, while Correct? gives the correctness of generated patches.
Distance presents the distance between fix location and crash location.

Subject ‘ D ‘ Type Sanitizer Template ‘ CFC FL Patched ‘ Correct? ‘ Distance ‘ Time(m)
207¢78a ND UBSan Ts X - X — - -
0a36d7f BO Lowfat T, v L1 v Sem Equiv. 4 3.44
Libtiff | ee65c74 10 UBSan T3 v L3 v Plausible 10 5.66
865f7b2 BO  Lowfat T, X - X — - -
565eaa2 ND UBSan Ts v L1 v Sem Equiv. 2 3.86
1914 BU  Lowfat T, X - X — - -
Lighttd | 2662 AS  Assert Ty v L3 v Sem Equiv. 9 8.09
2786 BO Lowfat T v L-1 v Plausible 7 6.91
5bb0a44e06 | ND  UBSan Ts v L4 v Plausible 10 16.23
426f31e790 | AA  APISan Ty v L1 v Syn Equiv. 2 14.31
2a6968e43a | BO  Lowfat Ty v L1 v Sem Equiv. 2 12.09
8deb11c0c3 | ND  UBSan Ts v L-1 v Plausible 1 10.08
72937223d | ND  UBSan Ts X - X - - -
2adf58cfcf | ND  UBSan Ts v L2 v Syn Equiv. 5 9.89
3acdca4703 | ND  UBSan Ts v L1 v Syn Equiv. 5 9.68
c2fe893985 | ND  UBSan Ts X - X - - -
93f65cdeac | ND  UBSan Ts X - X — - —
Php 8d520d6296 | ND  UBSan Ts v L1 v Sem Equiv. 1 7.89
cacf363957 | AA  APISan Ty v F v Plausible 2 8.96
cle510aea8 | ND  UBSan Ts v L2 v Sem Equiv. 4 10.23
f330c8ab4e | ND  UBSan Ts v L5 v Sem Equiv. 32 10.24
1d6c98a136 | ND  UBSan Ts v F v Plausible 2 30.02
acaf9c5227 | ND  UBSan Ts v L1 v Sem Equiv. 7 5.89
032bbc3164 | BO  Lowfat T, v L2 v Sem Equiv. 47 4.30
1923ecfe25 | AA  APISan Ty X - X — — —
cfa9c90b20 | ND  UBSan Ts v L1 v Plausible 1 5.66
Total |26 - - - 19 - 19 12 | (avg) 8.1 | (avg) 9.6

BO: buffer overflow; BU: buffer underflow; IO: integer overflow; DZ: divide-by-zero;
AA: API assert; ND: null pointer dereference; AS: developer assertion;

debugging information is ambiguous when symbolizing the condition enforced by sanitizers (the
limitation of our prototype).

Fix localization. For the cases that we can extract correct constraints, we further evaluate the
effectiveness of our fix localization. Out of 43 vulnerabilities, the correct fix locations of 24 defects
are exactly the first candidate T1 recommended by our fix localization algorithm. The correct fix
locations of 33 defects are correctly localized by looking into the top three candidates (T3).

Patch generation. Once constraints are correctly extracted and fix location candidates are deter-
mined, EXTRACTFIX then generates patches via constraint propagation and program synthesis. Out
of 56 vulnerabilities, EXTRACTFIX can generate 43 patches. Those patches fix the bug by changing
conditions, modifying the right-value of assignment or inserting an if-guard checker. For instance,
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Table 5. Patches generated by EXTRACTFIX. Column Sanitizer represents the sanitizer used by each defects,
where APISan is a sanitizer implemented by ourselves to detect violation of API specification, e.g. the
destination and source parameters should not overlap in memcpy. Column Template shows the template id
(defined in Table 1) used by each vulnerability, while column CFC represents whether we can extract correct
crash-free constraints. Column FL is the fault localization results, where L-N represents that we need to try N
fix location candidates until find the correct one. Column Patched shows whether we can generate patches to
pass the given tests, while Correct? gives the correctness of generated patches. Distance presents the distance
between fix location and crash location.

Subject ‘Vulnerability ID | Type Sanitizer Template‘CFC FL Patched‘ Correct? Distance‘Time(m)

CVE-2016-5321 | BO Lowfat T v L-1 v Syn Equiv. 2 1.68
CVE-2014-8128 | BO Lowfat T, v L1 v Sem Equiv. 5 2.40
CVE-2016-5314 | BO Lowfat T X - X - - -
Bugzilla 2633 BO Lowfat T, v L5 v Plausible 12 4.03
CVE-2016-10094| BO Lowfat T v L-2 v Plausible 2 1.87
Libtiff |CVE-2016-3186 | AA APISan Ty v L1 v Syn Equiv. 2 32
CVE-2017-7601 I0 UBSan T3 v L1 v Plausible 3 2.38
CVE-2016-9273 | BO Lowfat T, X - X - - -
CVE-2016-3623 | DZ UBSan Ts v L1 v Sem Equiv. 2 2.05
CVE-2017-7595 | DZ UBSan Ts v L1 v Sem Equiv. 2 2.20
Bugzilla 2611 DZ UBSan T v L1 v Sem Equiv. 1 2.13
Binutils CVE-2018-10372| BO Lowfat T v F v Plausible 2 16.57
CVE-2017-15025| DZ UBSan T v L1 v Sem Equiv. 2 36.00
CVE-2016-1834 | I0  UBSan T3 v F v Plausible 12 5.97
CVE-2016-1839 | BU Lowfat T, X - X - - -
Libxml2 | CVE-2016-1838 | BO Lowfat T, v L-1 v Plausible 3 4.12
CVE-2012-5134 | BU Lowfat T v L1 v Syn Equiv. 2 40.83
CVE-2017-5969 | ND UBSan Ts v L1 v Syn Equiv. 2 4.30
CVE-2018-14498 | BO Lowfat T v L-10 v Plausible 3 1.22
Libjpeg CVE-2018-19664 | BO Lowfat T, X - X - - -
CVE-2017-15232| ND  UBSan Ts v L1 v Sem Equiv. 2 1.37
CVE-2012-2806 | BO Lowfat T v L3 v Sem Equiv. 10 33.26
FFmpeg CVE-2017-9992 | BO Lowfat Ty v L4 v Sem Equiv. 7 9.27
Bugzilla-1404 I0  UBSan T3 v L1 Vv |SemEquiv. 3 7.20
Jasper CVE-2016-8691 | DZ UBSan Ts v L1 4 Sem Equiv. 5 1.08
CVE-2016-9387 | I0  UBSan T3 v F v Plausible 5 1.05
Bugzilla-26545 | AA  APISan Ty v L3 v Syn Equiv. 4 6.03
Coreutil Bugzilla-25003 | AA  APISan Ty v L1 v Syn Equiv. 2 4.30
GNUBug-25023 | BO Lowfat T X - X - - -
GNUBug-19784 | BO Lowfat T, X - X — - —
Total 30 - — — 24 - 24 16| (avg)4.0| (avg)9.3
BO: buffer overflow; BU: buffer underflow; IO: integer overflow; DZ: divide-by-zero;

AA: API assert; ND: null pointer dereference

to fix the Libtiff buffer overflow of CVE-2014-8128, developers add an if-checker at line 571 to
break the while-loop when nrows is equal to 256:

571 + if (nrows == 256) break;

Instead, ExTrRACTFIX fixes the bug by modifying the exit condition of while-loop, which is semanti-
cally equivalent to the developer patch:
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Table 6. The number of patches and correct patches generated by Prophet, Angelix, Fix2Fit and EXTRACTFIx.
The first part (the first three rows) shows the results on ManyBugs benchmark, and the second part presents
the results on our benchmark. In each subject, the tool that produces the most patches and the most correct
patches is marked in bold.

Program #Vul Total Patches Correct Patches

Prophet Angelix Fix2Fit EXTRACTFIX |Prophet Angelix Fix2Fit EXTRACTFIX
Libtiff 5 2 3 3 3 1 1 1 2
Lighttd 3 2 2 2 2 0 0 0 1
Php 18 10 7 9 14 6 4 6 9
Libtiff 11 7 7 7 9 1 0 1 6
Binutils 2 - - 1 2 - - 0 1
Libxml2 5 3 0 4 4 0 0 1 2
Libjpeg 4 3 - - 3 1 - - 2
FFmpeg 2 - - 2 2 - - 1 2
Jasper 2 2 2 2 2 0 0 0 1
Coreutil 4 2 - 3 2 0 - 1 2
Total 56 31 21 33 43 9 5 11 28

567 - while (err >= limit)

567 + while (err >= limit && nrows < 256)

With this patch, it is guaranteed that the vulnerability cannot be triggered again. In our benchmark,
once a correct constraint is generated, ExXTRACTFIX can always generate a patch.

Multi-line fix To fix the Libjpeg buffer overflow vulnerability of CVE-2012-2806, EXTRACTFIX
generates multiple-line fixes by changing two for-loop conditions.

Comparison with state-of-the-art We then compare the repairability of ExTrRAcTFIx with Prophet,
Angelix and Fix2Fit. We cannot run Angelix on some applications because the libraries (e.g. clang
2.9) used by Angelix no longer support the new versions of those applications. We did not run
Fix2Fit on Libjpeg since it does not support the compilation using cmake. Prophet fails to build
Binutils and FFmpeg. The columns 3-6 of Table 6 represent the number of patches generated by
Prophet, Angelix, Fix2Fit and EXTRACTFIX, respectively. Compared with Prophet and Angelix,
ExXTRACTFIX generates the same or more patches for all the applications. Compared with Fix2Fit,
ExXTRACTFIX generates more patches on Php, Libtiff, and Binutils, but less on Coreutils. This is
because Fix2Fit generates plausible patches by efficiently searching from a large patch space and
then uses fuzzing to rule out overfitted patches. In fact, our comparison with Fix2Fit is conservative
in favor of Fix2Fit, since Fix2Fit’s fuzzing campaigns have an 8-hour timeout, while our program
analysis based technique has a timeout of 1 hour (30 minutes for symbolic execution and 30 minutes
for program synthesis). Even then, EXTRACTFIX generates more plausible patches than Fix2Fit.
More importantly, as we will see later, the patches generated by EXTRACTFIX are of significantly
higher quality than the patches from Fix2Fit.

Out of 56 vulnerabilities, EXTRACTFIX extracts 43 correct constraints and generates 43
patches. EXTRACTFIX generates more patches than Prophet, Angelix and Fix2Fit.

5.3.2  Can EXTRACTFix alleviate the overfitting problem?
The generated patch can handle the bug-triggering exploit, but it may overfit to the given exploit.
To evaluate patch correctness, we take the developer patch as criteria and examine the patch
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correctness by manually analyzing the developer patch. For each generated patch by ExTracTFIX,
we check its syntactic and semantic equivalence with the developer patch by manually examining
if the patch changes the program behavior in the same way as the developer patch.

In Table 3, column Correct Patch gives the number or patches that are syntactically or semantically
equivalent to developer patches. Out of the 43 patches, 28 patches are syntactically or semantically
equivalent to developer patches, while 15 of them are plausible patches. We mark a patch as
Plausible if it partially fixes the vulnerability or changes program behavior differently compared
to the developer patch. Plausible patches exist because (1) the CFC’ could be incomplete since
backward propagation misses some paths between fix and crash location (e.g. paths inside for,
while loop) (2) ExTRACTFIX knows how to avoid triggering the vulnerability, but has narrow
knowledge about the intended program behavior from developers. For instance, an integer overflow
CVE-2017-7601 occurs when performing shift operation (1L<<bitssample) with bitssample>=63
(maximal positive signed long integer is 26°~1). To fix this vulnerability, developers insert an if-
checker (if (bitssample> 16) return 0) before the crash line. With the guidance of crash free constraint
bitssample<63, EXTRACTFIX fix the bug by inserting if (bitssample>=63) return 0. The generated
patch completely fixes the integer overflow, but may unintentionally modify the other program
behaviors. While EXTRACTFIX is designed to alleviate overfitting by completely fixing vulnerabilities,
it may still change the program behavior in an unintended way.

We compare EXTRACTFIX with Prophet, Angelix, and Fix2Fit for patch quality. The evaluation
results are shown in Table 6, where columns 7-10 represent the number of correct patches generated
by Prophet, Angelix, Fix2Fit, and EXTRACTFIX, respectively. The test suite provided to repair tools
is composed of the exploit and all available developer tests. Prophet, Angelix, and Fix2Fit are
test-driven program repair tools, so the quality of patches generated by them highly depends on
the quality of the test suite. For the defects from ManyBugs, test-driven program repair tools have a
higher chance to generate correct patches since there are more available tests. On average, there are
around 2.9k available tests for each defect from ManyBugs benchmarks (the first part of Table 6).*
All the test-driven program approaches generate a number of correct patches. Specifically, on the
26 defects, Prophet, Angelix, and Fix2Fit generate 7, 5, and 7 correct patches, respectively. Even
then, EXTRACTFIX generates much more (12) correct patches than all those approaches.

In our constructed benchmark (the second part of Table 6), the available tests are very limited,
and only very few tests can cover the crash line. Therefore, the generated patches by these tools can
easily overfit the given tests. Specifically, by manually checking the top patches against developer
patches, only two patches generated by Prophet are correct and all the patches from Angelix overfit
the failing tests. Fix2Fit can filter out some overfitted patches by test case generation, but the quality
of the patches is not high as found by our experiments. Out of the 20 patches generated by Fix2Fit,
only four patches are correct, while others still overfit the given test suite. In contrast, ExTRACTFIX
generates as many as 16 correct patches.

For bugs that are vulnerabilities supported by EXTRACTF1X, EXTRACTFIX outperforms
Prophet, Angelix and Fix2Fit in generating patches that are both syntactically and semanti-
cally equivalent to developer patches.

5.3.3  How efficient is EXTRACTFIx in generating patches?

Scalability is one of the most challenging problems of symbolic execution, hence semantic-based
program repair. In our evaluation, we show that our approach can scale to real-world large applica-
tions, e.g. FFmpeg with 617K lines of codes. Meanwhile, the execution time to generate patches is

4 Around half of the 2.9k tests are irrelevant and will not drive the program to the fix locations. Even then, there are still a
considerable number of useful tests in each subject.
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given in Table 3. On average, we only need 9.46 minutes to generate a patch, with a maximum of 41
minutes. Our approach is efficient because (1) our symbolic execution is only performed on a small
partial program. As shown in Table 3 and 5, the averaged distance between fix and crash location
is around 6, with maximum of 47. (2) our second-order program synthesis takes into account the
distance between patch candidates with original expression and first evaluates candidates that are
close to the original expression.

ExTRACTFIX can scale to large programs, such as FFmpeg. On average, it takes 9.46 minutes
to generate patches.

5.4 Threats to Validity

Internal Validity The main threat to internal validity is that ExTRACTF1xX performs backward
propagation via symbolic execution which may miss some paths and result in incomplete constraint
propagation. Fortunately, we only perform symbolic execution on a very small part of the program.
What matters is that the incompleteness doesn’t seem to have a big impact on the effectiveness of
the analysis. Another threat to internal validity is that we derive our CFC templates from frequently
reported bugs and vulnerabilities, we note that our set of templates is not exhaustive. By extending
CFC templates, ExTRACTFIX can easily support fixing other kinds of bugs/vulnerabilities whose
property violation is sanitizable and expressible as a simple formula. The last internal threat is
that we perform a manual inspection of the experimental results which might be error-prone. To
mitigate this, two authors of the paper double-checked the generated patches.

External Validity The main threat to external validity is that our selection of subjects may not
generalize to other programs. We cannot evaluate EXTRACTFIX on the dataset used in [15, 26, 49],
because FootPatch fixes resource/memory leak (C/C++) and null pointer dereference (Java), a large
part of defects in ManyBugs are logic bugs, and the exploits and fixes of some datasets (exploits)
used by SENX are not available. Instead, we evaluate EXTRACTFIX on a set of real programs and
real CVEs to show its usability. In the future, it may be worthwhile to evaluate our approaches on
more relevant CVEs and bugs.

6 RELATED WORK

In this section, we discuss the approaches that generate patches via semantic analysis and address the
overfitting problem in program repair. For a general summarization of program repair techniques,
the readers could refer to the overview articles [28, 44] or the surveys [13, 40].

Generate and Validate Program Repair Search-based approaches first generate a patch space
and then search correct patch via meta-heuristic [27], random search [42], test-equivalence analy-
sis [34] or learning approaches [33]. The correctness of patches is validated using the given test
suites. Search-based program repair is able to generate high-quality patches and can easily scale
to large programs. The weakness of search-based program repair comes from the incompleteness
of test suites. Because of the incompleteness of test suites, the generated patches may overfit the
given tests and can break untested functionality. Different from these approaches, ExTrAcTFIX
uses symbolic analysis and reasoning to generate correct patches beyond tests.

Semantic Program Repair Semantics-based techniques like SemFix [41], Nopol [60], Direct-
Fix [37], Angelix [38] and JFIX [23] generate patches in two steps. First, they formulate the re-
quirement to pass all given tests as constraints for the identified program statements. Second, they
synthesize a patch for these statements based on the inferred constraints. This type of approach
is related to EXTRACTFIxX because these approaches also involve constraint extraction and patch
synthesis. Semantics-based techniques extract constraints representing partial specifications to pass
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the given tests. The inferred specifications lay out the requirement for the patch to pass the given
test suite. In contrast, the constraints extracted by EXTRACTFIX represent the underlying cause of
the crash and the conditions that should be satisfied to fix vulnerabilities. Therefore, ExTRACTFIX
can alleviate the overfitting problem in automated program repair by generating patches that
generalize beyond the given tests. Specifically, ExTRACTFIx only needs a single exploit trace to
generalize the vulnerability, where existing semantic repair techniques usually need a test-suite.

Patch Ranking One way of addressing overfitting in program repair is to rank patches according
to statistical information learned from code repositories [39]. Typical approaches learn from existing
patches [25, 33, 45], existing source code [58], or both [18, 54] to rank the patches in the order of
likelihood to be correct. On the other hand, Xiong, et al. [57] propose to filter out the patches based
on syntactic and semantic distance between patched and original program. Since these approaches
are based on statistical information or heuristics, there is no guarantee that the generated patches
can be generalized beyond tests. In contrast, our approach extracts crash-free constraints and
ensures the constraint is satisfied on all tests.

Patch Filtering Several approaches [11, 56, 61] generate new test inputs to test the generated
patches, and discard patches that result in crashes. On the other hand, Gao, et al. propose to
provide the generated patches to developers for review in an interactive way [12]. Different from
these approaches that perform a-posteriori filtering, our approach directly considers the crash-free
constraint in the patch generation and ensures not to generate a patch violating the crash-free
constraint.

Static Program Repair Instead of relying on test cases, several approaches propose program
repair driven by static analysis and verification techniques. These approaches generate patches for
static analysis violation by reasoning in separation logic [49] or learning repair strategies from
the wild [1]. Specifically, the work of [49] generates patches that are guaranteed to satisfy certain
heap properties (this covers few common bug types such as memory leaks, resource leaks or null
de-reference). Different from our approach that is based on program synthesis to generate a patch,
their approach is still search-based, where semantic search [20] is used to identify code snippets
that satisfy the desired properties. Furthermore, the entire framework is based on the reasoning in
separation logic and is used to fix heap properties only.

Fix Localization in APR Fix localization (FL) techniques determine a set of suspicious buggy
statements for fixing, which is one of the key steps in automated program repair. Spectrum-based
FL [43, 55] is widely used in existing APR which finds candidate fix locations by analyzing the
execution trace of passing and failing tests. The FL results depend on the quality of the tests, but
high-quality tests are not always available. According to a recent study [32], only a subset of bugs
can be currently localized by Spectrum-based FL techniques. In contrast, our approach does not rely
on complete test suites, and may only require a bug-trigger input. Instead of purely relying on test
cases, existing techniques improve the fix localization by further utilizing bug report [21, 31] or deep
learning approaches [30]. Our dependency-based fix localization is orthogonal to those approaches.
Combining with those approaches may generate better fix localization results. Compared with
VFix [59], which localizes buggy statements via value flow analysis for null pointer deference, our
approach is more general and can be applied to other kinds of bugs.

Reference Implementation In many development scenarios, there exists a reference implemen-
tation, and the developers try to be compatible with the reference implementation while optimizing
other aspects such as performance. For example, when implementing a Java compiler, OpenJDK
is the reference implementation, and other implementations such as Jikes JVM tries to optimize
the performance. Based on this observation, [36] proposes program repair with a reference imple-
mentation, where the reference implementation serves as an oracle to avoid overfitting. Compared
with this approach, our approach does not need a reference implementation.
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Customized Program Repair Some program repair approaches are designed to repair a specific
type of bugs, such as fixing memory leaks [10, 29] or concurrency bugs [3, 19]. This type of work
is related to ours because these approaches also assume the existence of a bug constraint and try to
generate patches satisfying the constraint. In contrast, our work does not focus on a specific type
of bug but tries to derive a general approach that works for any bug types where a bug constraint
can be derived.

Vulnerability Repair The recent work SENX [15] aims to repair vulnerabilities using a combi-
nation of predicate generation, patch placement, and patch synthesis. The main difference with
SENX is that SenX does not have any analytical understanding of which fix locations are suitable
and what fixes to insert, and usually inserts trivial if-conditions to disable the crash at/near the
crash location ([15] Table III). Besides, SENX does not perform any constraint propagation. In the
absence of constraint propagation, SENX relies on heuristics to guide patch generation, which
limits it to specific classes of bugs. In contrast, EXTRACTFIX is not limited to certain vulnerabilities.
Most of the patches generated by ExTRACTFIX are more general and modify expressions/statements
different from the crash location.

7 CONCLUSION

Overfitting of generated patches is a key challenge in automated program repair. Overfitting results
from weak specifications, such as a test-suite, driving program repair. In this work, we have sought
to tackle overfitting by directly extracting constraint specifications from an observed vulnerability.
Even though the vulnerability is observed on a specific test input (the so-called exploit), our
extracted constraint captures the "general reason" behind the vulnerability via symbolization. By
propagating the extracted constraint from the crash location to other potential fix locations, we
generate fixes via fix localization and patch synthesis. Our work thus goes beyond test-suite driven
repair and provides a workflow and tool for exploring the fix space of common software security
vulnerabilities as well.
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