
Scaling up Program Synthesis to Efficient Algorithms
Ruyi Ji

jiruyi910387714@pku.edu.cn
Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education

School of Computer Science, Peking University
Beijing, China

Abstract
The automatic synthesis of algorithms can effectively re-
duce the difficulty of algorithm design. However, multiple
challenges exist for synthesizing algorithms. Among them,
scalability of the synthesizer is the most prominent one be-
cause of the significant complexity of efficient algorithms.
To address this scalability challenge, we propose several
approaches from two aspects, improving the efficiency of
existing program synthesizers and reducing the difficulty of
algorithm synthesis by properly using algorithmic knowl-
edge, respectively.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.

Keywords: Program Synthesis, Efficient Algorithms

ACM Reference Format:
Ruyi Ji. 2023. Scaling up Program Synthesis to Efficient Algorithms.
In Companion Proceedings of the 2023 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications:
Software for Humanity (SPLASH Companion ’23), October 22–27,
2023, Cascais, Portugal. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3618305.3623586

1 Motivation
Efficiency is a major pursuit in practical software develop-
ment, and designing suitable algorithms is a fundamental
way to achieve efficiency. Nowadays, algorithm design has
become a necessary course for programmers. Various text-
books on algorithm design have been published, and various
related courses have been offered. Even so, designing algo-
rithms in practice is still difficult and even risky.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0384-3/23/10. . . $15.00
https://doi.org/10.1145/3618305.3623586

• Utilizing textbook paradigms of algorithm design is
challenging for programmers because it usually re-
quires much human intelligence. For example, the par-
adigm of divide-and-conquer only suggests recursively
dividing the problem into sub-problems and then com-
bining the sub-solutions obtained from sub-problems,
but how to divide and combine for a concrete task is
unknown and up to the programmer to discover.
• Performing algorithm-level optimizations in software
design is error-prone. Such optimization may greatly
increase code complexity, break modularity, and thus
significantly increase the risks of program flaws.

To reduce the burden of algorithm design, the automatic
synthesis of algorithms (denoted as algorithm synthesis prob-
lems) has attracted much research interest [1, 4, 12]. Specifi-
cally, an algorithm synthesis problem is specified by a refer-
ence program that is possibly inefficient and some available
algorithmic knowledge such as a suitable algorithmic para-
digm. Then, the goal of this problem is an algorithm that is
not only correct (i.e., keeping the same input-output behavior
as the reference program) but also as efficient as possible.
Figure 1 shows a sample algorithm synthesis problem,

whose target is a parallel algorithm for calculating the second
minimum in an input list. In this problem, a straightforward
sort-based program is provided as the reference. It is ineffi-
cient as it runs inO (n logn) time on a list of lengthn. Besides,
the paradigm of divide-and-conquer is also provided as it
is commonly used for designing parallel algorithms. Given
this problem, an algorithm synthesizer is expected to find
an efficient parallel algorithm based on divide-and-conquer
(the right-side program in Figure 1), which runs in O (n/p)
time on a list of length n and p ≤ n/ logn processors. In this
algorithm, function dac deals with the sub-list in range [l , r),
runs in the paradigm of divide-and-conquer, and also returns
the minimum of the current sub-list as an auxiliary value for
merging the second minimums.
Algorithm synthesis problems can be regarded as sub-

problems of program synthesis [2], whose target is to au-
tomatically find a program satisfying some user-provided
specification. However, existing program synthesizers can
hardly solve algorithm synthesis problems because efficient
algorithms are usually significantly more complex than nor-
mal programs. As shown in our sample problem (Figure 1), a
correct program for the second minimum (i.e., the reference
program) can be constructed within a few operators from

1

https://orcid.org/0000-0002-0150-8629
https://doi.org/10.1145/3618305.3623586
https://doi.org/10.1145/3618305.3623586
https://doi.org/10.1145/3618305.3623586

SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal Ruyi Ji

Figure 1. An algorithm synthesis problem whose target is an efficient parallel algorithm for calculating the second minimum.

library functions (i.e., sort). In contrast, an efficient algorithm
is often constructed from a low level, resulting in a much
more complex control flow and a much larger program scale.
Therefore, scaling up program synthesis to support more
complex programs is necessary for synthesizing algorithms.

2 Problem
Our aim is to effectively synthesize algorithms. To achieve
this, we attempt to answer the following two questions.
Problem 1: Can we improve existing program synthesizers
to support synthesizing programs with larger scales?

Specifically, we consider the framework of counter-example
guided inductive synthesis (CEGIS), a framework widely used
in modern program synthesizers. As shown in Figure 2, a
CEGIS solver is formed by a verifier and a programming-by-
example (PBE) solver. Starting from an empty set of input-
output examples, the PBE solver synthesizes from existing
examples, and the verifier searches for a counterexample of
the synthesized program. The found example will be pro-
vided to the PBE solver for subsequent synthesis, and if such
an example does not exist, the current program will be re-
turned as the final result. We aim to develop more efficient
synthesizers under this framework.
Problem 2: Can we reduce algorithm synthesis problems to
simpler forms by properly utilizing algorithmic knowledge?

Direct usages of algorithmic knowledge (e.g., paradigms)
usually lead to complex synthesis tasks, on which efficient
synthesizers (e.g., CEGIS solvers) are inapplicable. For ex-
ample, a direct idea of synthesizing divide-and-conquer al-
gorithms on lists is to fill the template in Figure 3. How-
ever, CEGIS solvers cannot be directly applied to synthe-
size unknown sub-programs in this template because these
sub-programs are wrapped in a recursion. It is difficult to
collect separate input-output examples for each unknown
sub-program. We aim to develop better methods of utilizing
algorithmic knowledge to make CEGIS solvers applicable.

Note that our study focuses on the efficiency of the synthe-
sizer instead of the efficiency of the synthesized algorithms.
In most cases, the latter can be easily ensured by properly
designing the space of candidate programs. For example, if
we want to synthesize an efficient divide-and-conquer al-
gorithm by filling the template in Figure 3, it is enough to
ensure that the program space includes only constant-time

programs. At this time, the resulting algorithm must run in
O (n/p) time on a list of length n and p ≤ n logn processors.

3 Approach
We develop several approaches to respectively answer the
two questions raised in Section 2.

3.1 Improving Program Synthesis
The efficiency of a CEGIS solver depends on multiple fac-
tors, including the efficiency of the PBE solver, the quality of
counter-examples, and the generalizability of the PBE solver
(that is, the ability to find the correct program from a few
examples). The first factor determines the time cost of each
iteration, and the latter two determine the number of itera-
tions required in synthesis. We propose several approaches
to improve each of these factors (Figure 2).
To improve the efficiency of the PBE solver, we propose

MaxFlash [8], which uses probabilistic models to accelerate
FlashFill [5], one of the most successful PBE solvers. Specifi-
cally, we introduce a specialized class of models that can be
effectively combined with FlashFill, and we also improve the
search procedure of FlashFill to better utilize the prediction
provided by the models. In this way,MaxFlash achieves more
than 200× speed-ups compared with the original FlashFill.
To improve the example quality, we formalize the prob-

lem of selecting high-quality examples as the question selec-
tion problem and propose two effective question selectors
IntSy [7] and RandomSy [6]. Concretely, we first establish a
theoretical connection between the question selection prob-
lem and the problem of constructing optimal decision trees.
Then, IntSy approximates an effective strategy for construct-
ing decision trees by sampling, and RandomSy further accel-
erates IntSy by estimating the complex program semantics
with simple probabilistic models. In this way, RandomSy can
reduce the number of iterations by 4.56%-28.2% for existing
CEGIS solvers with negligible extra time cost.
To improve the generalizability of the PBE solver, we es-

tablish a theory of measuring the generalizability and char-
acterize a class of PBE solvers, named Occam solvers, whose
generalizability is guaranteed in our theory. Then, we de-
sign an efficient Occam solver, named PolyGen [9], which
achieves 58.2%-69.9% reductions in the number of iterations
and 7.02×-15.1× speed-ups compared with previous solvers.

2

Scaling up Program Synthesis to Efficient Algorithms SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal

Figure 2. The CEGIS framework and the approaches we proposed for im-
proving the components in it.

Figure 3. A template of divide-and-
conquer on lists.

3.2 Utilizing Algorithmic Knowledge
We investigate several common algorithmic paradigms and
design specialized approaches for applying CEGIS solvers.
For divide-and-conquer, we notice that to fill the template in
Figure 3, it is enough to find an auxiliary program aux and
a combinator comb satisfying the following formula for any
lists xsL and xsR , where ref denotes the reference program,
aux declares auxiliary values, comb combines the sub-results
on sub-lists, and xsL ++ xsR denotes the list concatenation.

(ref (xsL ++ xsR), aux(xsL ++ xsR)) =
comb

(
(ref (xsL), aux(xsL)), (ref (xsR), aux(xsR))

) (1)

In the second minimum task (Figure 1), a valid aux returns
the minimum of the list, and the comb calculates the first
and second minimums from those of the two sub-lists.

One key observation here is that the scale of aux is usually
much smaller than comb because aux does not need to be
efficient. Therefore, the key to effectively solving Formula (1)
is to apply CEGIS solvers to synthesize comb, which requires
collecting input-output examples for comb. To achieve this,
we propose several decomposition methods to synthesize
aux separately before comb. After substituting aux with the
synthesis result, Formula (1) will be an input-output specifi-
cation for comb, on which CEGIS solvers are applicable.
We notice that the application of various paradigms can

be reduced to a generalized form of Formula (1), and we pro-
pose AutoLifter [10] to solve this generalized form following
the above procedure. The paradigms supported byAutoLifter
include divide-and-conquer, single-pass, incrementalization,
segment trees, and some paradigms for longest segment
problems. We evaluate AutoLifter on 96 algorithmic tasks,
and the results show that AutoLifter solves 82 out of 96 tasks
with an average time cost of 6.53 seconds, significantly out-
performing existing related approaches.
Besides AutoLifter, we also propose MetHyl [11] for syn-

thesizing dynamic programming algorithms and AutoElim
for eliminating intermediate data structures in inefficient
programs. Similar to AutoLifter, these two approaches uti-
lize domain knowledge to make CEGIS solvers applicable to
synthesize the unknown parts in the resulting algorithm.

4 Evaluation Methodology
Our primary hypothesis is that we can synthesize non-trivial
algorithms for algorithmic tasks. To test this hypothesis,

we intend to construct a large-scale dataset of algorithm
synthesis by collecting tasks from previous studies, textbooks
on algorithm design such as Introduction to Algorithms [3],
and online programming platforms such as LeetCode and
Codeforces. We shall implement our approaches and evaluate
their effectiveness on this dataset.

References
[1] Umut AAcar et al. 2005. Self-adjusting computation. Ph. D. Dissertation.

Carnegie Mellon University.
[2] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin,

Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-
guided synthesis. In FMCAD 2013, Portland, OR, USA, October 20-23,
2013. 1–8. http://ieeexplore.ieee.org/document/6679385/

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. 2009. Introduction to Algorithms, 3rd Edition. MIT Press. http:
//mitpress.mit.edu/books/introduction-algorithms

[4] Azadeh Farzan and Victor Nicolet. 2017. Synthesis of divide and
conquer parallelism for loops. In PLDI. 540–555. https://doi.org/10.
1145/3062341.3062355

[5] Sumit Gulwani. 2011. Automating string processing in spreadsheets
using input-output examples. In POPL 2011, Austin, TX, USA, January
26-28, 2011. 317–330. https://doi.org/10.1145/1926385.1926423

[6] Ruyi Ji, Chaozhe Kong, Yingfei Xiong, and Zhenjiang Hu. 2023. Im-
proving Oracle-Guided Inductive Synthesis by Efficient Question
Selection. Proc. ACM Program. Lang. 7, OOPSLA1 (2023), 819–847.
https://doi.org/10.1145/3586055

[7] Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and Zhenjiang Hu.
2020. Question selection for interactive program synthesis. In PLDI
2020, London, UK, June 15-20, 2020. ACM, 1143–1158. https://doi.org/
10.1145/3385412.3386025

[8] Ruyi Ji, Yican Sun, Yingfei Xiong, and Zhenjiang Hu. 2020. Guiding
dynamic programing via structural probability for accelerating pro-
gramming by example. Proc. ACM Program. Lang. 4, OOPSLA (2020),
224:1–224:29. https://doi.org/10.1145/3428292

[9] Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu. 2021. Gener-
alizable synthesis through unification. Proc. ACM Program. Lang. 5,
OOPSLA (2021), 1–28. https://doi.org/10.1145/3485544

[10] Ruyi Ji, Yuwei Zhao, Yingfei Xiong, DiWang, Lu Zhang, and Zhenjiang
Hu. 2023. Divide and Conquer Divide-and-Conquer – Inductive Syn-
thesis for D&C-Like Algorithmic Paradigms. arXiv:2202.12193 [cs.PL]

[11] Ruyi Ji, Tianran Zhu, Yingfei Xiong, and ZhenjiangHu. 2022. Synthesiz-
ing Efficient Dynamic Programming Algorithms. CoRR abs/2202.12208
(2022). arXiv:2202.12208 https://arxiv.org/abs/2202.12208

[12] Yewen Pu, Rastislav Bodík, and Saurabh Srivastava. 2011. Synthesis
of first-order dynamic programming algorithms. In OOPSLA. ACM,
83–98. https://doi.org/10.1145/2048066.2048076

Received 2023-07-21; accepted 2023-08-10

3

http://ieeexplore.ieee.org/document/6679385/
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1145/3062341.3062355
https://doi.org/10.1145/3062341.3062355
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/3586055
https://doi.org/10.1145/3385412.3386025
https://doi.org/10.1145/3385412.3386025
https://doi.org/10.1145/3428292
https://doi.org/10.1145/3485544
https://arxiv.org/abs/2202.12193
https://arxiv.org/abs/2202.12208
https://arxiv.org/abs/2202.12208
https://doi.org/10.1145/2048066.2048076

	Abstract
	1 Motivation
	2 Problem
	3 Approach
	3.1 Improving Program Synthesis
	3.2 Utilizing Algorithmic Knowledge

	4 Evaluation Methodology
	References

