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Oracle-guided inductive synthesis (OGIS) is a widely-used framework to apply program synthesis techniques

in practice. The question selection problem aims at reducing the number of iterations in OGIS by selecting a

proper input for each OGIS iteration. Theoretically, a question selector can generally improve the performance

of OGIS solvers on both interactive and non-interactive tasks if it is not only effective for reducing iterations but

also efficient. However, all existing effective question selectors fail in satisfying the requirement of efficiency.

To ensure effectiveness, they convert the question selection problem into an optimization one, which is difficult

to solve within a short time.

In this paper, we propose a novel question selector, named LearnSy. LearnSy is both efficient and effective

and thus achieves general improvement for OGIS solvers for the first time. Since we notice that the optimization

tasks in previous studies are difficult because of the complex behavior of operators, we estimate these behaviors

in LearnSy as simple random events. Subsequently, we provide theoretical results for the precision of this

estimation and design an efficient algorithm for its calculation.

According to our evaluation, when dealing with interactive tasks, LearnSy can offer competitive performance

compared to existing selectors while being more efficient and more general. Moreover, when working on

non-interactive tasks, LearnSy can generally reduce the time cost of existing CEGIS solvers by up to 43.0%.
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1 INTRODUCTION
Oracle-guided inductive synthesis (OGIS) [Jha and Seshia 2017] is a widely-used framework to

apply program synthesis techniques in practice. A typical implementation of OGIS synthesizes

programs by iteratively invoking a solver for programming-by-example (PBE) [Shaw et al. 1975], a
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question selector, and an oracle
1
. In each iteration, the PBE solver generates a candidate program,

the question selector either accepts the candidate program as the synthesis result or selects an

input among all available inputs, and the oracle completes the selected input into an input-output

example, which will be provided to the PBE solver in the next iteration.

There are two major types of OGIS tasks, which correspond to interactive and non-interactive

application scenarios.

• In interactive tasks, the human user acts as the oracle. In every iteration, the question selector

shows an input to the user and asks for the intended output on this input. For these tasks,

the performance of an OGIS solver is usually measured by the user burden during synthesis.

• In non-interactive tasks, the oracle is an executable that provides the output of the target

program. In this case, the performance of an OGIS solver is usually measured by the time

cost for synthesis.

For both types of tasks, the number of iterations used for synthesis is an important indicator of

the performance of OGIS solvers. For interactive tasks, the number of iterations directly reflects

the user burden. Fewer iterations correspond to fewer questions asked to the user and hence less

user burden. For non-interactive tasks, the number of iterations reveals how many times each

component in the OGIS solver is invoked during synthesis, which in turn determines the time cost

of the OGIS solver. Therefore, to improve the performance of OGIS solvers, the problem of reducing

the number of OGIS iterations has received much attention [Ji et al. 2020a, 2021; Kalyan et al. 2018;

Singh and Gulwani 2015; Tiwari et al. 2020].

The question selection problem is proposed for a question selector that minimizes the number of

iterations [Ji et al. 2020a; Tiwari et al. 2020]. It is motivated by the observation that the selection

of inputs has a strong impact on the number of questions needed. For example, when only three

programs 0,x ,y are available, selecting the input as ⟨x = 1,y = 2⟩ is sufficient to help the synthesizer

find the correct program because the output returned by the oracle must uniquely correspond to

the target. On the contrary, selecting the input as ⟨x = 0,y = 0⟩ cannot bring any progress for

synthesis as the output must be 0 whatever the correct program is.

Ji et al. [2020a] conducted a theoretical analysis of the question selection problem and reduced

it to an optimization problem on the inputs. In this optimization problem, the objective function

measures how an input distinguishes remaining programs, those programs satisfying all existing

examples. In other words, the question selector should select an input where the outputs of the

remaining programs vary as significantly as possible. For instance, when the remaining programs

are 0,x ,y, the selector should prefer input ⟨x = 1,y = 2⟩, where all the remaining programs output

differently, to input ⟨x = 0,y = 0⟩, where all the remaining programs output the same.

However, even reduced to an optimization problem, solving the question selection problem

remains difficult, and even the evaluation of the objective function for a given input faces significant

scalability challenges. A direct approach to measure how an input distinguishes the remaining

programs needs to enumerate all of these programs, get the output for each program, and measure

the diversity of all the outputs. It is rather impossible to finish this procedure within an acceptable

timeframe since the program space in a synthesis task is usually extremely large.

To address the scalability issue, it is natural to consider evaluating the objective function ap-

proximately rather than precisely. Attempts have been made in this regard, but the results are still

limited [Ji et al. 2020a; Tiwari et al. 2020]. These studies make approximations by sampling a small

set of programs from all remaining ones and measuring the output diversity from this set only.

This approximation could reduce the number of programs taken into consideration, but two main

shortcomings remain:

1
Here we use the triple-form OGIS studied by Ji et al. [2020a], where the selection of questions is in a separate component.
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• Low efficiency. Theoretically, selecting a sample set from the remaining programs is a

task even harder than PBE because this selection asks for multiple programs satisfying all

examples, but PBE only needs to find one such program. Therefore, this approximation

usually slows down OGIS solvers and thus can only be applied to interactive tasks.

Meanwhile, such inefficiency would also lead to significant user inconvenience. To reduce

the response time, Ji et al. [2020a] assume that the user needs a long time (2 minutes in their

implementation) to answer each query, and then they use this period to perform background

sampling. However, most existing interactive tasks include easy-to-answer queries. While

processing these tasks, the user must wait until enough samples have been collected, resulting

in an unacceptable response time.

• Low generality. Existing approaches [Ji et al. 2020a; Tiwari et al. 2020] rely on efficient

witness functions, which only exist in specific synthesis domains, to perform sampling.

Therefore, their usages are quite limited.

In this paper, we design an efficient approximation approach for the objective function and

propose a question selector that achieves general improvement for OGIS solvers. Our approach has

two remarkable advantages compared to existing approaches:

• High Efficiency. Our approach does not require extra remaining programs and thus does not

involve extra synthesis tasks, which constitute the major time-consuming aspect of existing

approaches. The time cost of our approach relates only to the size of the grammar specifying

the program space and the number of iterations, both of which are usually small numbers.

Consequently, our approach achieves general speedups for OGIS solvers on non-interactive

tasks. It is the first question selector to realize this speedup to our knowledge.

• High Generality. Our approach uses only the semantics of programs and the grammar,

making it applicable to all tasks under the syntax-guided synthesis framework [Alur et al.

2013] without relying on efficient witness functions.

To get an efficient approximation, we analyze the original objective function and find that the

complex semantics of operators is the main challenge for evaluation. Based on this observation,

our approximation is performed in three steps. Firstly, we propose the unified-equivalence model

to approximate the behavior of operators with probabilities and estimate the likelihood of two

programs outputting the same from a certain input. Secondly, we approximate the objective function

with the model estimations. Finally, we find that the calculation of the approximated objective

value can be decomposed into subtasks on sub-program spaces, thereby generating an efficient

dynamic-programming algorithm.

We complete our approximation approach into a question selector named LearnSy in a generate-

and-select manner. In each OGIS iteration, LearnSy generates a set of candidate inputs and selects

the one with the best approximated objective value. We evaluate the performance of LearnSy on

both interactive and non-interactive OGIS tasks.

• For interactive tasks, we apply LearnSy to the interactive synthesis framework proposed by Ji

et al. [2020a] and evaluate it on 166 tasks collected by previous studies. The results show that

LearnSy achieves competitive performance with SampleSy [Ji et al. 2020a], a state-of-the-art

question selector for interactive synthesis, while requiring a shorter sampling period and not

asking for witness functions of related operators.

• For non-interactive tasks, we apply LearnSy to the counter-example guided inductive synthe-

sis (CEGIS) framework [Solar-Lezama et al. 2006] and compare it with (1) the default selector

in CEGIS, and (2) two manually-designed domain-specific heuristics on input selection dis-

cussed in previous studies on PBE solvers [Jha et al. 2010; Padhi et al. 2018]. We combine

these selectors with three state-of-the-art PBE solvers and evaluate them on 755 tasks in 3
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different domains. The results show that LearnSy can reduce the time cost of all considered

CEGIS solvers by up to 43.0%.

2 OVERVIEW
In this section, we will explain the main idea of our approach with a motivating example. This

example will also be used throughout this paper.

2.1 The Motivating Example
This example includes a sample synthesis task, an oracle, and a PBE solver. In this example, we

assume the question selector always forms an OGIS solver with the given oracle and the given PBE

solver, and the OGIS solver is applied to solve the sample task.

Sample task. We consider the task of synthesizing x + y from the following grammar Ge .

S B 1 | x | y | T +T T B 1 | x | y

There are 12 programs in this grammar. We list them below in ascending order by size.

1,x ,y, 1 + 1, 1 + x , 1 + y,x + 1,x + x ,x + y,y + 1,y + x ,y + y (1)

To simplify the task, we assume that variables x and y only take values within the set {0, 1, 2}.
Therefore, there are only 9 possible inputs.

Oracle. Given any input, the oracle provides the corresponding output of the target program x +y.
PBE solver. In this example, we consider an enumeration-based PBE solver. When given a set

of input-output examples, this PBE solver will enumerate programs in Ge following Order 1 and

return the first program that satisfies all given examples.

Finally, we assume that the question selector includes a verifier as a component and accepts the

PBE result as final when it is equivalent to x + y.

2.2 The Min-Pair Strategy forQuestion Selection
The question selector is a significant factor to affect the number of iterations needed for synthesis.

A naive way to select the input is to find a counterexample where the PBE result gives an incorrect

output and thus ensure at least one incorrect program is excluded after each iteration. However,

this counterexample may overfit the PBE result, resulting in a number of iterations as large as the

size of the program space. Fortunately, appropriate input selection can help reduce the number

of iterations. In our sample synthesis task, the target program x + y will be found within three

iterations if input ⟨x = 0,y = 2⟩ and ⟨x = 1,y = 0⟩ are selected in the first two iterations. This

number of iterations (3) is much smaller than the size of the program space (12).
The question selection problem is aboutminimizing the number of iterations by properly selecting

the inputs. Ji et al. [2020a] connect this problem to the optimal decision tree problem and prove the

effectiveness of a series of greedy strategies in solving the question selection problem. In this paper,

we consider one of these strategies, namely min-pair [Adler and Heeringa 2012; Chakaravarthy

et al. 2011]. In this section, we would only explain a simplified version of the min-pair strategy

and leave the detailed discussion in Section 3.2. In the simplified min-pair strategy, the objective

value of an input is the number of pairs in the remaining programs (those satisfying all existing

examples) that provide the same output from the given input. In each iteration, this strategy always

selects the input with the smallest objective value.

Table 1 shows the synthesis procedure with the min-pair strategy, where ⟨a,b⟩[w] represents

an input ⟨x = a,y = b⟩ with an objective value of w . For example, in the second iteration, only

four programs y, 1 + 1,x + y and y + x satisfy the previous example ⟨0, 2⟩ 7→ 2, and their outputs

on input ⟨1, 0⟩ are 0, 2, 1 and 1 respectively. Therefore, the objective value of input ⟨1, 0⟩ in the
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Table 1. The synthesis procedure with the min-pair strategy.

Turn PBE Result Remaining Programs Inputs Example

1 1 all programs in Ge

⟨0, 0⟩[62], ⟨0, 1⟩[56], ⟨0, 2⟩[34]

⟨1, 0⟩[56], ⟨1, 1⟩[90], ⟨1, 2⟩[46]

⟨2, 0⟩[34], ⟨2, 1⟩[46], ⟨2, 2⟩[42]
⟨0, 2⟩ 7→ 2

2 y y, 1 + 1,x + y,y + x
⟨0, 0⟩[10], ⟨0, 1⟩[10], ⟨0, 2⟩[16]

⟨1, 0⟩[6], ⟨1, 1⟩[10], ⟨1, 2⟩[8]

⟨2, 0⟩[10], ⟨2, 1⟩[6], ⟨2, 2⟩[8]
⟨1, 0⟩ 7→ 1

3 x + y

second iteration is 6, representing four pairs of the same program and two pairs of x + y and y + x
in different orders. According to Table 1, the min-pair strategy can finish the synthesis with merely

three iterations and thus achieves the optimal selection.

2.3 The Approximation of the Objective Function in the Min-Pair Strategy
Despite that the min-pair strategy is effective in reducing iterations, its practical application is

difficult. The direct evaluation of its objective function needs all programs in the program space

to be enumerated and to have their outputs calculated. Such a procedure is so time-consuming

that makes it is practically not feasible because the size of the program space is usually extremely

large. Therefore, we intend to propose an efficient approximation of the objective function of the

min-pair strategy.

Main idea. In this approximation, we assume the program space is specified by a grammar. Such a

program space is compositional. Each non-terminal in the grammar specifies a sub-program space,

and these sub-program spaces make up the whole program space according to the grammar rules.

To enable an efficient calculation on such a program space, our approximation should be compo-

sitional, too; In other words, its results should be calculable based on the results of sub-program

spaces. In this case, we need only to process each sub-program space once and do not have to

consider their combinations. This procedure is efficient since the number of sub-program spaces

(i.e., the grammar size) is usually small in practice.

The objective function of the min-pair strategy is not compositional due to the complex behavior

of operators. To see this point, let us consider a special case, where (1) there is no existing example,

and (2) only the 9 programs expanded from S → T +T are considered. In this case, the objective

value of an input is the number of pairs of programs expanded from S → T +T that output the

same on the given input, and the task on the sub-program space is counting the number of pairs of

sub-programs expanded from (T ,T ) that output the same. However, this sub-result is not enough

to calculate the objective value. For those pairs whose sub-programs give different outputs, their

final outputs may still be the same as different integer pairs may have an identical sum.

To enable a compositional approximation, our approach estimates the complex behavior of

operators with probabilities. In the special case discussed above, our approach will approximate

+ as a random function and assume that, for any two pairs of different integers, the probability

for the random + to output the same is always a fixed constant c . Subsequently, the objective

value can be estimated as the expected number of program pairs that output the same under the

approximated operator. This approximation is compositional since the subtask here is to calculate

the expected number of sub-program pairs that output the same. When the subtask results inw ,

the approximation can be calculated as w + c (81 −w ), as (1) there are 81 program pairs in total,

and (2) each pair where sub-programs output differently has a probability of c to give the same

final output.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 103. Publication date: April 2023.
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Table 2. A unified equivalence model on grammar Ge .

(a) Assignments to self.

Rule Value

S → T +T 5/36

S → x 0

. . . . . .

(b) Assignments to cross

Rule S → T +T S → x . . .

S → T +T 1/9

S → x 1/9

. . . . . .

Fig. 1. The procedure for the model in Table 2 to estimate the check between x + y and x + x .

Dealing with examples. Our approximation is straightforward when dealing with more general

cases. When examples are available, the objective function will only consider programs satisfying all

these examples. The approach to process the special case cannot deal with such constraint because

it only distinguishes whether the outputs of two programs are the same without considering the

concrete outputs of programs.

To go through this issue, we make the following two observations.

• For any two concrete programs, their probability to output the same can be estimated after

estimating the behavior of operators with probabilities.

• A PBE result, a program satisfying all examples, is available in each OGIS iteration.

Therefore, our approach calculates the probability for each program to satisfy all examples as the

probability for the program to output the same as the PBE result on all examples (using a similar

approach as in the special case). In this way, we get a compositional approximation of the objective

value for general cases.

Unified-equivalence model. Next, we will elaborate on how our approach estimates the probabil-

ity for two programs to output the same. This estimation is accomplished via a unified-equivalence

model and a compositional method similar to the method to process the special case.

A unified-equivalence model is bound to a grammar and a concrete input; in other words, it is

specific for estimating the probability for two programs in this grammar to output the same under

this input. Table 2 demonstrates a unified-equivalence model for grammarGe and input ⟨0, 2⟩. This
model includes two series of parameters.

• Series self deals with the case we met in the previous special case. For each grammar rule r ,
self(r ) estimates the probability for two programs expanded from r to output the same when

their sub-programs output differently.

• Series cross deal with the other casewhere two programs are expanded from different grammar

rules. For each pair of different rules (r , r ′), parameter cross(r , r ′) estimates the probability

for two programs (one expanded from r , the other from r ′) to output the same.

This unified-equivalence model can be used to recursively estimate whether two concrete

programs output the same. Figure 1 shows the procedure to estimate the probability for x + y
and x + x to output the same, where each rectangle represents a subtask, p1 =? p2 represents an

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 103. Publication date: April 2023.
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estimation task for programs p1 and p2, and blue expressions describe the calculation. To estimate

for x + y and x + x , the model first estimates the probability for their sub-programs, (x ,y) and
(x ,x ), to output the same, where the result is 0. In the other case, the model regards the probability

for x + y and x + x to output the same as self(S → T + T ) = 5/36. Thus, the model estimation

becomes 0 + 5/36 × (1 − 0) = 5/36.
Based on the unified-equivalence model, our approximation of the objective value in the min-pair

strategy is defined in three steps. First, all pairs of concrete programs in the program space are

enumerated. Then, unified-equivalence models are used to estimate the probability for each pair

to satisfy all examples and to output the same. Finally, the estimations for all pairs are added up,

and the sum is taken as the result. This estimation is compositional, as shall be shown in Section

5.3, and intuitively, it is because (1) the program space is compositional, and (2) the estimation of

unified-equivalence models proceeds recursively according to the structure of programs.

Learning unified-equivalence models. Estimations provided by unified-equivalence models

rely on the parameters, hence a crucial problem is how to learn proper assignments so that high-

quality estimations are enabled. Therefore, we first define a series of ideal models whose precisions

are guaranteed in theory, namely natural unified-equivalence models. Following that, we design a

sampling-based learning algorithm to efficiently generate a model close to the ideal one.

Every unified-equivalence model in our approach is specific for estimating the equivalence

between programs in a fixed grammar under a fixed input. With a certain grammar and an input,

our learning algorithm learns a corresponding model in three steps. Firstly, it samples several

program pairs from the program space. Secondly, it evaluates these program pairs on the given

input and checks whether the outputs are the same for each pair. Finally, it calculates proper

parameters from the check results. This algorithm is efficient, and thus we learn models on demand

while selecting inputs, i.e., our approach learns a new model whenever a new input is involved.

It is worth noting that the unified-equivalence model is not designed to estimate whether two

programs output the same precisely; instead, its design purpose is to simplify the behavior of

operators and thus enable a compositional approximation. Even so, we prove that the learned

unified-equivalence model is precise in estimating the overall equivalence, providing an unbiased

estimation of the number of program pairs that output the same (Theorem 4.8). Moreover, we

provide an operator named flattening to further improve the precision of our model on every single

estimation (Theorem 4.11).

2.4 Generation and Selection in LearnSy
In this paper, we propose a question selector named LearnSy that runs in a generate-then-select

manner based on our approximation (Algorithm 1). It generates a set of candidate inputs (Line 1)

and selects the best input among them with the approximated objective values (Lines 2-9).

The generation process depends on the synthesis task. When a verifier is available, the CEGIS

framework [Solar-Lezama et al. 2006] can be applied to generate inputs wherepc outputs incorrectly.
If such a verifier is unavailable, the framework of interactive program synthesis [Le et al. 2017] can

be applied to generate inputs that can distinguish at least two remaining programs. In some cases,

the number of different possible inputs can be large. Therefore, an upper limit is set on the number

of candidate inputs to control the time cost in our implementation.

The selection process is straightforward. LearnSy learns a unified-equivalence model for each

related input (Lines 3, 5), calculates the approximated objective value for each candidate input (Line

6), and selects the input with the smallest approximated objective value as the result (Line 7).

A verifier is available in our motivating example, so the CEGIS framework can be used to generate

candidate inputs. At this time, LearnSy selects the input with the smallest approximated objective
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Algorithm 1: The procedure of LearnSy.
Input: A context-free grammarG , an input space I, a candidate program

pc , and a set examples of existing examples.

Output: The selected input or symbol ⊥ representing pc is accepted.
1 candidateInps← GetCandidateInputs(I,pc);

2 bestObj← +∞; bestInp← ⊥;

3 exampleModels← {Learn(G, inp) | (inp 7→ oup) ∈ examples};

4 foreach inp ∈ candidateInps do
5 model← Learn(G, inp);

6 obj← Approximate(G, model, exampleModels);

7 if obj < bestObj then (bestObj, bestInp) ← (obj, inp);

8 end
9 return bestInp;

value among those inputs where the PBE result outputs other than x + y. For this task, LearnSy
is as efficient as the min-pair strategy (i.e., synthesis is finished in three iterations) given a large

enough number of samples for learning.

3 THE MIN-PAIR STRATEGY
Now, we introduce some necessary notations and the details of the min-pair strategy. Since this

paper only focuses on the approximation of the min-pair strategy, we will keep other related

concepts such as the OGIS framework [Jha and Seshia 2017] and the question selection problem [Ji

et al. 2020a] informal. In this paper, these concepts are used as described in previous literature.

3.1 Preliminaries
A program synthesis task is usually discussed based on an underlying domain D = (P, I,O, ⟦·⟧D),
where P, I, and O represent a program space, an input space, and an output space, respectively.

⟦·⟧D is an oracle function that associates a program p ∈ P and an input I ∈ I with an output in O,
denoted as ⟦p⟧D (I ). The domain limits the scope of possible programs and concerned inputs and

provides the corresponding program semantics.

In this paper, we make two assumptions on the underlying domain. First, we assume that there

is a universal output space and a universal oracle function ⟦·⟧ for all domains. Therefore, a domain

can be abbreviated as a pair (P, I), in which only a program space and an input space are involved.

Second, following the framework of syntax-guided synthesis [Alur et al. 2013], we assume that

P is specified by a regular-tree grammar (RTG), where each program is expanded according to its

syntax tree.

Definition 3.1 (RTG). An RTG is a tuple G = ⟨N , Σ, s0,R⟩ where:

• N is a finite set of non-terminals. s0 is an element in N , representing the start non-terminal.

• Σ is a ranked alphabet, where each symbol f is attached with an arity k , written as f (k ) .
• R is a finite set of grammar rules. Each rule in R is in the form of s → f (k ) (s1, . . . , sk ), where
s, s1, . . . , sk are non-terminals in N and f (k ) is a symbol in Σ.

A program is inG if it can be obtained by expanding s0 following a finite number of grammar rules.

Similar to existing question selectors [Ji et al. 2020a; Tiwari et al. 2020], our approach requires

the program space P to be finite, i.e., the RTG specifying P to be acyclic. This requirement is not

critical because an infinite program space can always be truncated into a finite one in practice (by
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setting a size limit large enough, for example). In our approach, we provide an iterative method to

adapt the truncation on demand, which will be discussed in Section 6.

In the following sections, we will use a term equivalence check to denote a predicate in the form

of ⟦p⟧(I ) = ⟦p ′⟧(I ), which checks whether programs p and p ′ output the same on input I . This
predicate will be frequently used in our approach.

3.2 The Min-Pair Strategy
Adapted from a state-of-the-art approach for the optimal decision tree problem [Adler and Heeringa

2012; Chakaravarthy et al. 2011], the min-pair strategy specifies a question selector in the OGIS

framework, and its effectiveness is ensured by the bijection between the optimal decision tree

problem and the question selection problem [Ji et al. 2020a].

Intuitively, to minimize the number of iterations, the selected input should exclude as many

programs as possible in each turn. Based on this intuition, the min-pair strategy assumes that there

is a prior distribution over the program space that represents the probability for each program to

be the target. Following that, the strategy aims at minimizing the probability for a random program

to be remaining after selecting the input.

Definition 3.2 (Min-Pair). Given an underlying domain (P, I), a distribution φ over P, and a set E
of existing input-output examples, the min-pair strategy selects an input I from I that minimizes

the following objective function.

obj
0
[P,φ,E](I ) = Pr

p,p∗∼φ

[
p ∈ remain

(
P,E ∪ {I 7→ ⟦p∗⟧(I )}

) ��� p∗ ∈ remain(P,E)
]

where (1) Pr[C1 |C2] represents the conditional probability, (2) p represents a random program, and

p∗ represents the target program, (3) I 7→ ⟦p∗⟧(I ) represents the new example when the target

program is p∗ and the selected input is I , and (4) remain(P,E) represents the set of programs in

P that satisfy all examples in E. This objective function calculates the probability for a random

program p to satisfy all examples after input I is selected.
This function can be transformed into the following equivalent form, where φ (p) represents the

probability of program p in φ, and [·] is a function mapping true to 1 and false to 0.

obj
1
[P,φ,E](I ) =

∑
p,p′∈P

φ (p)φ (p ′)
[
p,p ′ ∈ remain(P,E)

] [
⟦p⟧(I ) = ⟦p ′⟧(I )

]

Example 3.3. The simplified form of the min-pair strategy discussed in Section 2, where the

objective function is the number of pairs of remaining programs that output the same, is equivalent

to the above function when φ is a uniform distribution over P.

When taking the PBE result pc into consideration, the transformed objective function can be

expressed using only equivalence checks. It is easy to prove that the following function is equal to

obj
1
when pc satisfies all examples in E, where eq(p,p ′, I ) is an abbreviation of [⟦p⟧(I ) = ⟦p ′⟧(I )],

the result of an equivalence check.

obj[P,φ,E,pc ](I ) =
∑

p,p′∈P

φ (p)φ (p ′)eq(p,p ′, I )
∏

(I ′ 7→O ′)∈E

(
eq(pc ,p, I

′)eq(p,p ′, I ′)
)

(2)

Since we assume that P is specified by a regular-tree grammar, for efficient probability assess-

ments, we further assume that φ is also defined over the grammar, in the form of probabilistic

regular-tree grammar (PRTG).

Definition 3.4 (Probablistic Regular-Tree Grammar (PRTG)). A PRTG is an RTG ⟨N , Σ, s0,R⟩ com-

bined with a function γ : R 7→ [0, 1] that assigns a probability to each rule. γ needs to ensure
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the sum of the probabilities of the rules starting from the same non-terminal to be exactly 1, i.e.,∑
r ∈R (s ) γ (r ) = 1 for every non-terminal s in N , where R (s ) representing the rules starting from s .

In a PRTG, the probability assigned to a grammar rule r denotes the probability of choosing rule

r to expand non-terminals . Therefore, for a program expanded by rules r1, . . . , rn , its probability is

defined as

∏n
i=1 γ (ri ).

Example 3.5. The following example shows the PRTG specifying a uniform distribution over

grammar Ge
2
in Section 2, where r [w] denotes the probability assigned to rule r isw .

S B 1 [1/12] | x [1/12] | y [1/12] | T +T [3/4] T B 1 [1/3] | x [1/3] | y [1/3]

In this PRTG, the probability of x + y is equal to γ (S → T +T )γ (T → x )γ (T → y) = 1/12.

4 UNIFIED-EQUIVALENCE MODEL
In this section, we will introduce the formal definition of the unified-equivalence model (Section 4.1),

show a learning algorithm for this model (Section 4.2 and 4.3), and finally introduce the flattening

operation, which can improve the precision of our model (Section 4.4).

4.1 Unified-Equivalence Model
The unified-equivalence model approximates a recursive procedure receq for evaluating equivalence

checks, in which the syntax of programs is used when making decisions. Given programs p,p ′ and
input I , receq evaluates the predicate ⟦p⟧(I ) = ⟦p ′⟧(I ) as follows.

receq(p,p ′, I ) =




⟦p⟧(I ) = ⟦p ′⟧(I ) r , r ′

true r = r ′ ∧
(∧n

i=1 receq(pi ,p
′
i , I )
)

⟦p⟧(I ) = ⟦p ′⟧(I ) Otherwise

where r is the first grammar rule used by p; n is the arity of the symbol in r , p1, . . . ,pn are the

sub-programs of p; and r ′,n′,p ′
1
, . . . ,p ′n′ are the counterparts related to program p ′. In the second

case, receq employs the fact that p and p ′ must output the same when their sub-programs output

the same because the semantics of each operator must be a function.

Lemma 4.1 (Correctness of receq). For any two programs p,p ′ and any input I , receq(p,p ′, I )
results in true if and only if ⟦p⟧(I ) = ⟦p ′⟧(I ).

Due to the space limit, we move all proofs to the appendix [Ji et al. 2023a].

In the definition of receq, two cases still rely on the semantics of operators. To avoid such reliance,

the unified-equivalence model approximates these cases with Bernoulli trials by involving two

series of parameters named self and cross. These parameter series represent the probability for the

model to return true when approximating the first and the third cases of receq, respectively.

Definition 4.2 (Unified-Equivalence Model). Given an RTGG with rule set R, a unified-equivalence
model M is specified by two functions self : R 7→ [0, 1] and cross : R × R 7→ [0, 1], which assign

probabilities to each grammar rule and each pair of different grammar rules, respectively.

A unified-equivalence model M induces an estimation function M(p,p ′) that estimates how

likely an equivalence check between programs p and p ′ results in true.

M(p,p ′) =

{
cross(r , r ′) r , r ′

w + (1 −w )self(r ),wherew =
∏n

i=1 M(pi ,p
′
i ) r = r ′

2
Precisely speaking, Ge is not an RTG unless its rule S → T + T becomes S → +(2) (T , T ). Here, we keep the original

definition of Ge for simplicity.
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where r is the first grammar rule used by p; n is the arity of the symbol in r ; p1, . . . ,pn are the sub-

programs of p; and r ′,n′,p ′
1
, . . . ,p ′n′ are the counterparts related to program p ′. In this definition,

the blue and green parts correspond to the second case and the third case in receq, respectively,

andw represents the probability for sub-programs to output the same.

Example 4.3. Figure 1 shows how a unified-equivalence model estimates the equivalence check

between x + y and x + x . The symbolic form of the estimation is given below.

w + (1 −w )self(S → T +T ),wherew = cross(T → x ,T → y)

4.2 Natural Unified-Equivalence Model
Given a PRTG and an input, our learning algorithm learns a unified-equivalence model specific for

equivalence checks (1) between programs drawn from the PRTG and (2) on the given input. Our

algorithm is designed in two steps. First, a subclass of unified-equivalence models named natural

unified-equivalence model is highlighted, because its precision is guaranteed in theory. Then, an

algorithm to efficiently learn a model similar to the natural model is developed.

In a natural unified-equivalence model, the value of each parameter precisely matches its effect

in estimation. According to Definition 4.2, each parameter in the unified-equivalence model has a

clear role in the estimation of equivalence checks.

• Parameter self(r ) estimates the probability for two programs to output the same under the

conditions that (1) both programs are expanded from rule r , and (2) the sub-programs of the

two programs output differently.

• Parameter cross(r1, r2) estimates the probability for two programs to output the same when

the two programs are expanded from rules r1 and r2, respectively.

We found that given any distribution over the program space and a concrete input, the probability

estimated by each parameter is well-defined and calculable. For example, the probability estimated

by parameter cross(r1, r2) is the probability of event ⟦p1⟧(I ) = ⟦p2⟧(I ), where I is the given input,

and pi (i ∈ {1, 2}) is a random program drawn from all programs expanded from rule ri according
to the given distribution. Therefore, a natural idea to get an effective unified-equivalence model

is to set each parameter to its estimated probability. Such an assignment is named as the natural

assignment to a parameter, and the model where each parameter is set to its natural assignment is

named the natural unified-equivalence model.

Definition 4.4 (Natural Unified-Equivalence Model). Given a PRTG φ and an input I , the natural

unified-equivalence model for I and φ, denoted as
˜MI
φ , is a unified-equivalence model on the

grammar of φ, and each parameter is set as follows.

self(r ) = Pr

p,p′∼φ (r )

[
⟦p⟧(I ) = ⟦p ′⟧(I ) | ∃i, ⟦pi ⟧(I ) , ⟦p

′
i ⟧(I )

]
(3)

cross(r , r ′) = Pr

p∼φ (r ),p′∼φ (r ′)

[
⟦p⟧(I ) = ⟦p ′⟧(I )

]
(4)

where pi and p
′
i represent the i-th sub-program of p and p ′ respectively, p ∼ φ (r ) represents that p

is a random program drawn from those programs expanded from rule r in which the probability

for each program to be selected is directly proportional to its probability assigned by φ.

Example 4.5. Table 2 describes a part of a unified-equivalence model, which in fact corresponds

to the natural unified-equivalence model for input ⟨2, 0⟩ and the PRTG discussed in Example 4.3,

i.e., a uniform distribution over grammar Ge . In this example, we explain the calculation for the

natural assignment of self(S → T +T ).
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Algorithm 2: The learning algorithm Learn in Algorithm 1.

Input: A PRTG φ with rule set R, an input I , and two constants ns ,wdefault
.

Output: A unified-equivalence model learned for φ and I .
1 self← {}; cross← {};

2 foreach r ∈ R do
3 (p1, . . . ,pns ) ← Sample(r ,φ,ns); (p′

1
, . . . ,p′ns ) ← Sample(r ,φ,ns);

4 n1 ← the number of i ∈ {1, . . . ,ns } such that IsSubDiff(pi ,p
′
i , I);

5 n2 ← the number of i ∈ {1, . . . ,ns } such that IsSubDiff(pi ,p
′
i , I) and ⟦pi ⟧(I ) = ⟦pi ⟧(I

′);

6 if n1 > 0 then self(r ) ← n2/n1 else self(r ) ← w
default

;

7 end
8 foreach r , r ′ ∈ R do
9 (p1, . . . ,pns ) ← Sample(r ,φ,ns); (p′

1
, . . . ,p′ns ) ← Sample(r ′,φ,ns);

10 cross(r , r ′) ← (the number of i ∈ {1, . . . ,ns } such that ⟦pi ⟧(I ) = ⟦p
′
i ⟧(I ))/ns ;

11 end
12 return (self, cross);

In a unified-equivalence model, self(S → T +T ) is used when the two programs are both expanded

from S → T +T but their sub-programs output differently. There are 9 programs expanded from

this rule, and their probabilities are all the same on the given PRTG. More specifically, there are

1, 2, 3, 2 and 1 programs that output 0, 1, 2, 3 and 4 on input ⟨2, 0⟩, respectively. These programs’ sub-

programs produce different outputs varying from (0, 0) to (2, 2). Therefore, there are 72 program
pairs whose sub-programs output differently under input ⟨2, 0⟩, in which 10 of such pairs output

the same. As a result, the natural assignment of self(S → T +T ) is 10/72 = 5/36.

The natural unified-equivalence model precisely captures the overall equivalence between

programs on its PRTG and its input (Lemma 4.6). When two programs in the equivalence check are

random, the expected estimation given by the natural unified-equivalence model is always equal

to the ground truth, the probability for the two random programs to output the same under the

corresponding input.

Lemma 4.6. For any input I and any PRTG φ, the corresponding natural unified-equivalence model

˜MI
φ always satisfies the equation below.

E
p,p′∼φ

[
˜MI
φ (p,p

′)
]
= Pr

p,p′∼φ

[
⟦p⟧(I ) = ⟦p ′⟧(I )

]

4.3 Learning a Unified-Equivalence Model
Learning a natural unified-equivalence model is difficult in practice. According to Formula 3 and 4,

the natural assignments rely on the outputs of all related programs, thereby presenting a similar

challenge to that of evaluating the objective function of the min-pair strategy.

Our learning algorithm approximates the natural-unified equivalence model by sampling. Algo-

rithm 2 shows the pseudocode of the learning algorithm, where self and cross are implemented as

Python-styled dictionaries, ns represents the number of samples, andwdefault represents the default

value of the parameters. There are two functions in Algorithm 2.

• Sample(r ,φ,ns) drawsns samples from programs expanded from rule r , where the probability
for a program to be selected is directly proportional to its probability assigned by φ.
• IsSubDiff(p,p ′, I) checks whether the sub-programs of p and p ′ output differently under

input I ; in other words, this function returns ∨i ⟦pi ⟧(I ) , ⟦p
′
i ⟧(I ), where pi (p

′
i ) represent the

i-th sub-program of p (p ′).
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In brief, for each parameter, Algorithm 2 approximates its natural assignment by generating ns
pairs of random programs and calculating the corresponding probability on the samples only. This

algorithm is efficient because, under a fixed number of samples, its time cost is polynomial to the

grammar size (a small number generally). Therefore, this algorithm is capable to learn models on

demand while selecting inputs without any obvious efficiency loss.

Our learning algorithm can provide an unbiased estimation for the natural unified-equivalence

model (Lemma 4.7). In other words, the expected estimation given by the learned model is always

equal to the estimation from the natural unified-equivalence model.

Lemma 4.7. For any input I and any PRTG φ, the equation below holds for every two programs p,p ′.

E[M(p,p ′)] = ˜MI
φ (p,p

′),whereM = Learn(φ, I)3

where the randomness comes from the random samples used in Learn.

Based on the lemmas provided above, we prove that for any natural unified-equivalence model,

the learned model provides an unbiased estimation of the real probability for two random programs

to output the same (Theorem 4.8).

Theorem 4.8. For any input I and any PRTG φ, the following equation is always satisfied.

E
p,p′∼φ

[
M(p,p ′)

]
= Pr

p,p′∼φ

[
⟦p⟧(I ) = ⟦p ′⟧(I )

]
,whereM = Learn(φ, I)

where the randomness on the left-hand side also includes the random samples used in Learn.

4.4 Improving the Precision by Flattening
Despite that the precision of the learned model is guaranteed to some extent (Theorem 4.8), the

estimations provided by the model are not completely accurate in many cases. In this section,

we introduce an operator named flattening on the program space and the PRTG to improve the

precision of unified-equivalence models.

The flattening operator transforms the program space by flattening a selected grammar rule into

a series of 0-arity rules while keeping the probability of each program unchanged. Each of these

0-arity rules corresponds to a program expanded from the selected rule.

Definition 4.9 (Flattening Operation). Given a PRTG φ defined on grammarG, a flattening opera-

tion is specified by a grammar rule r ∗ in G and transforms φ into a new PRTG with the following

procedure.

(1) Let s be the start non-terminal of rule r ∗ and P be the set of programs expanded from rule r ∗.
(2) The set of non-terminals and the start non-terminal are kept unchanged.

(3) For each program p ∈ P , a 0-arity symbol □p is added with the same semantics as p.
(4) Rule r ∗ is removed, and for each program p ∈ P , rule s → □p is added.

(5) The probabilities assigned to existing rules remain unchanged, but those to the new rules are

set to the probability of the corresponding program in φ.

Example 4.10. Consider a program space specified by the following grammar G.

S → S1 + S1 | S1 − S1 S1 → x | y

By flattening rule S → S1 − S1 in G, another grammar G ′ can be obtained, as shown below.

S → S1 + S1 | □x−x | □x−y | □y−x | □y−y S1 → x | y

3
Here we assume the default value w

default
is never used as its usage corresponds to an unexpected case whose probability

is negligible with a large enough number of samples.
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Consider the equivalence check between x +y and x −y on input ⟨x = 0,y = 1⟩. The ground truth

of this check is false, and the two estimations given from the two grammars are shown below. Since

the calculations for these estimations are straightforward, the details are omitted for simplicity.

• LetM1 be the natural-unified equivalence model for grammarG , input ⟨x = 0,y = 1⟩, and the

uniform distribution over the program space. In this model, cross(S → S1 + S1, S → S1 − S1)
is 1/4, and thus estimation M1 (x + y,x − y) is also 1/4, with an absolute error of 1/4.
• LetM2 be the natural-unified equivalence model for grammar G ′, input ⟨x = 0,y = 1⟩, and

the uniform distribution over the program space. In this model, cross(S → S1 +S1, S → □x−y )
is 0, and thus estimation M2 (x + y,x − y) is also 0, which is accurate.

Therefore, in this case, the estimation given by the natural-unified equivalence model becomes

more accurate following the flattening operation.

Theorem 4.11 generalizes the case study in Example 4.10, showing that the precision of the natural

unified-equivalence model is never damaged following the flattening operation. Intuitively, the

flattening operation reduces the average number of operations used by programs, and thus provides

benefits to the precision of unified-equivalence models since errors in a unified-equivalence model

come from approximating the behavior of operators.

Theorem 4.11. Given two programs p and p ′, an input I , and a unified-equivalence modelM, define

same(p,p ′, I ,M) as the probability for the estimation of M to be exactly the same as the recursive

procedure receq(p,p ′, I ), that is, the result of each estimation happens inM(p,p ′) is equal to the ground
truth in receq(p,p ′, I )4. Given an input I and a PRTG φ, define acc(φ, I ) as a function measuring the

accuracy of the natural model
˜MI
φ , as shown below.

acc(φ, I ) B E
p,p′∼φ

[
same

(
p,p ′, I , ˜MI

φ

)]
For any input I , any PRTG φ, and any grammar rule r , acc(φr , I ) is always no smaller than acc(φ, I ),
where φr represents the result of flattening grammar rule r in φ.

Besides, if the flattening operation is applied repeatedly, the grammar will ultimately become

completely flattened
5
, in which every program is flattened into a separate grammar rule. At this

time, the estimation given by the natural unified-equivalence model will become absolutely accurate

because the ground truth of every equivalence check is recorded into paramteter cross.

Example 4.12. Following Example 4.10, by further flattening rule S → S1 + S1 in grammar G ′, a
completely flattened grammar G ′′ can be obtained, as shown below.

S → □x+x | □x+y | □y+x | □y+y | □x−x | □x−y | □y−x | □y−y

Let M3 be the natural unified-equivalence model for grammar G ′′, input ⟨x = 0,y = 1⟩, and the

uniform distribution over the program space. For any two different programs p1 and p2, estimation

M3 (p1,p2) is equal to cross(S → □p1 , S → □p2 ). This parameter is equal to the ground truth of

the equivalence check between p1 and p2 on ⟨x = 0,y = 1⟩, by the definition of natural unified-

equivalence models.

It is worth noting that there is a trade-off between precision and efficiency in the usage of

flattening. Flattening always increases the grammar size while improving the precision of the

unified-equivalence models, which would lead to an undesired rise in the time cost.

4
Due to the space limit, we omit the formal definition of same here, which can be found in the appendix [Ji et al. 2023a].

5
Recall that the grammar is assumed to be acyclic in this section.
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5 APPROXIMATION OF THE MIN-PAIR STRATEGY
In this section, we will introduce our approximation (Section 5.1) and propose an efficient algorithm

for calculating the approximation (Section 5.2 and 5.3).

5.1 Approximated Objective Function
In our approximation, we apply unified-equivalence models to the min-pair strategy. The approxi-

mated objective function is obtained by replacing each equivalence check in Formula 2 with the

estimation given by a learned unified-equivalence model (Definition 4.2). For example, equiva-

lence check eq(p,p ′, I ) in Formula 2 is replaced with estimationMI (p,p
′), whereMI denotes the

unified-equivalence model learned for input I .

Definition 5.1 (Approximated Objective Function). Given domain (P, I), a PRTGφ over the program

space, a set E of input-output examples, and a candidate program pc satisfying all examples in E,
the approximated objective function appr[P,φ,E,pc ](I ) is defined as the following.

appr[P,φ,E,pc ](I ) =
∑

p,p′∈P

φ (p)φ (p ′)MI (p,p
′)
∏

(I ′ 7→O ′)∈E

(
MI ′ (pc ,p)MI ′ (p,p

′)
)

where φ (p) represents the probability of program p assigned by φ, and MI denotes the unified-

equivalence model learned for input I , i.e., Learn(φ, I ).

Example 5.2. Consider the second iteration of the synthesis procedure in Table 1, where the PBE

result is y, and the only existing example is ⟨0, 2⟩ 7→ 2. The approximated objective value of input

⟨1, 0⟩ in this iteration when the given PRTG is φ can be expressed as follows:∑
p,p′∈Ge

φ (p)φ (p ′)M⟨1,0⟩ (p,p
′)M⟨0,2⟩ (y,p)M⟨0,2⟩ (p,p

′)

Our approximation is designed not for precision but for a compositional approximation to enable

efficient question selection. Even so, the following two corollaries show that our approximation is

precise in some aspects. Both of them are direct corollaries to the properties of unified-equivalence

models discussed in Section 4.

In the first OGIS iteration where no input-output example is available, our approximation is

unbiased. In this case, the original objective function measures the overall equivalence of two

random programs on the given input, i.e., the probability for two random programs to output the

same. Therefore, the property of the unbiased estimation is direct from Theorems 4.6 and 4.8.

Corollary 5.3. For any program space P, any PRTG φ over the program space, and any program

pc ∈ P, the following equation always holds.

E
[
appr[P,φ, ∅,pc ](I )

]
= obj[P,φ, ∅,pc ](I )

where the randomness on the left-hand side comes from the random samples used in Learn.

In addition, our approximation is also precise when the program space is completely flattened.

This is because errors in our approximation come from the loss of the estimations given by unified-

equivalence models, but these estimations are accurate when the program space is completely

flattened (Section 4.4).

Corollary 5.4. For any completely flattened program space Pf , any PRTG φ over Pf , any set E
of input-output examples, and any program pc satisfying all examples in E, the following equation
always holds.

appr[Pf ,φ,E,pc ](I ) = obj[Pf ,φ,E,pc ](I )
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5.2 Two Examples of Calculating the Approximation
The compositionality of the approximations is used to calculate them efficiently. Our algorithm

works in a divide-and-conquer manner by decomposing the task into subtasks on sub-program

spaces, conquering each subtask recursively, and combining the sub-results. We find that the

number of different subtasks in this procedure is bounded, and thus we speed up the calculation by

dynamic programming, i.e., reusing results among identical subtasks.

For clarification, let us first consider two concrete cases on our sample program space Ge , in

which two assumptions are made for simplicity.

• PRTG φ specifies a uniform distribution over Ge , i.e., it is the one discussed in Example 4.3.

• The learning algorithm always returns a dummy model M, where all parameters are 1/2.

Case 1: zero example. In the first OGIS iteration, there is no example, and thus the approximated

objective value is

∑
p,p′∈Ge φ (p)φ (p

′)M(p,p ′). To calculate this expression, we divide the summation

into cases according to the first grammar rules used by p and p ′, as shown below.

φ (1)φ (1)M(1, 1) + · · · +
∑

p1+p2,p′
1
+p′

2
∈Ge

φ (p1 + p2)φ (p
′
1
+ p ′

2
)M(p1 + p2,p

′
1
+ p ′

2
)

where the first and the last terms correspond to the case where p and p ′ are both expanded from rule

S → 1 and S → T +T respectively. These terms are calculated separately, and then the approximated

objective value is obtained by summing up the calculation results.

Each term is calculated by a three-staged procedure: (1) unfolding, (2) extraction of subtasks on

sub-program spaces and recursive solving, and (3) combination of the sub-results. The unfolding

stage proceeds in four steps (using the most complex last term as an example):

(1) The summation of programs expanded from S → T +T can be unfolded into summations of

sub-programs, each ranging on programs expanded from non-terminal T .
(2) The probability of each program can be unfolded into the probability of sub-programs by the

definition of PRTG. For example, φ (p1 + p2) is equal to γ (S → T +T )φ (p1)φ (p2).
(3) The estimation can be unfolded into estimations on sub-programs by its definition.

The result following these three steps is shown below, where each parameter is replaced by its

concrete assignment, and p ∈ T represents that p ranges on those programs expanded from T .∑
p1,p2,p′

1
,p′

2
∈T

9

16

φ (p1)φ (p2)φ (p
′
1
)φ (p ′

2
)
(
1

2

+
1

2

M(p1,p
′
1
)M(p2,p

′
2
)
)

(4) In the last step, the inner plus (the blue part) is unfolded into two separate summations and

reorganized as below, where a global coefficient of 9/32 is neglected for simplicity.

∑
p1,p2,p′

1
,p′

2
∈T

φ (p1)φ (p2)φ (p
′
1
)φ (p ′

2
) + *.

,

∑
p1,p′

1
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φ (p1)φ (p
′
1
)M(p1,p

′
1
)+/
-

*.
,

∑
p2,p′

2
∈T

φ (p2)φ (p
′
2
)M(p2,p

′
2
)+/
-
(5)

In this unfolded formula, the first summation must be 1 by the definition of PRTG and the second

part consists of two separate sub-summations with the same form as the original task. Each of

these sub-summations corresponds to a non-terminal, and the task is to calculate the sum of (the

product of the program probabilities and an estimation) over all program pairs expanded from

the non-terminal. Therefore, the two sub-summations are subtasks of the original task and can be

calculated recursively. Moreover, these two subtasks are identical because they correspond to the

same non-terminal, and we only need to solve one of them to get the results for two.
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Case 2: single example. The procedure in Case 1 is almost identical to the general algorithm,

except the form of subtasks is still partial due to the lack of examples and the PBE result. Now, we

discuss a more general case (Example 5.2), where both the example and the PBE result are involved.

The procedure is generally identical to that in Case 1 till the third stage of unfolding. After that,

the term where both programs are expanded from S → T +T becomes as follows, where a global

coefficient of 9/128 is ignored for simplicity.∑
p1,p2,p′

1
,p′

2
∈T

φ (p1)φ (p2)φ (p
′
1
)φ (p ′

2
)
(
1 +M⟨1,0⟩ (p1,p

′
1
)M⟨1,0⟩ (p2,p

′
2
)
) (
1 +M⟨0,2⟩ (p1,p

′
1
)M⟨0,2⟩ (p2,p

′
2
)
)

The next step is to unfold the inner plus (the blue part) into separate summations. Four sub-

summations are obtained, where no model, only model M⟨1,0⟩, only model M⟨0,2⟩, and both models

are considered, respectively. These sub-summations are in the following form, whereM represents

the list of considered models, and M is equal to [], [M⟨1,0⟩], [M⟨0,2⟩], and [M⟨1,0⟩,M⟨0,2⟩] for the
four sub-summations, respectively.

*.
,

∑
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(6)

With a more general definition of subtasks, we can unify the two parts in the formula above and

the original task. Each subtask here is specified by a non-terminal, an optional concrete program

(only in the original task here), and a series of estimations among the concrete program and

two program variables p,p ′. Then the goal is to calculate the sum of (the product of φ (p),φ (p ′),
and all estimations) over all program pairs (p,p ′) expanded from the non-terminal. Through this

unification, we can solve both parts in Formula 6 recursively.

5.3 A Dynamic-Programming Algorithm for the Approximation
In this section, we give a brief introduction to our dynamic-programming algorithm for the approx-

imation, which is naturally generalized from Section 5.2.

Subtasks. Given a PRTG φ, each subtask generated in our algorithm is specified by a non-terminal

s , a concrete program pc , and two lists of modelsMp andMc
6
. The task is to calculate a summation

over all program pairs (p,p ′) expanded from non-terminal s , where the contribution of each pair

is equal to the product of (1) the probabilities of p and p ′, (2) the estimations for (p,p ′) given by

models inMp , and (3) the estimations for (pc ,p) given by models inMc . Formally, the task is to

calculate the formula below.∑
p,p′∈s

φ (p)φ (p ′)
∏

M∈Mp

M(p,p ′)
∏

M∈Mc

M(pc ,p)

Specially, we regard pc as ⊥ when it is never used, i.e., whenMc = [].

Example 5.5. Now we apply this definition to the tasks discussed in previous sections. For

simplicity, we use a temporary notation S(s,pc ,Mp ,Mc ) to denote a subtask in this example.

• The first case in Section 5.2 and its subtask in Formula 5 correspond to S(S,⊥, [M], []) and
S(T ,⊥, [M], []), respectively. The second case and its subtask in Formula 6 correspond to

S(S,y, [M⟨1,0⟩,M⟨0,2⟩], [M⟨0,2⟩]) and S(T ,⊥,M, []) respectively.

6
Here we use lists instead of sets because a model may be involved multiple times in theory.
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• Given PBE result pc and an example set E, the approximated objective value of input I

corresponds to S(s0,pc ,MI : M,M), where s0 is the start non-terminal, MI represents the

model trained for input I , operator : represents the constructor of lists, and M represents the

learned models for inputs involved in E, i.e., [MI ′ | (I
′ 7→ O ′) ∈ E].

Procedure. The procedure of our algorithm is almost as discussed in Section 5.2, so we only make

a summary here. For any subtask, our algorithm runs in the following steps, with a memoization

table restoring the results of visited subtasks.

(1) Directly return the result in the memoization table when the subtask has been visited.

(2) Divide the summation into cases according to the first rules used by p and p ′.
(3) For each case, unfold the summation to sub-programs, unfold probabilities of programs and

estimations according to their definition, and unfold the inner plus via the distributive law.

(4) Express each case using subtasks and then solve these subtasks recursively.

(5) Calculate the result from sub-results, restore it into the memoization table, and then return.

Time complexity. The time cost of dynamic programming depends on (1) the number of different

subtasks and (2) the time cost to process each subtask without considering the recursions.

• For the first factor, our algorithm ensures that, in each subtask, the concrete program is a

sub-program of that in the original task, and both model lists are sub-lists of the counterparts

in the original task. Therefore, the number of different subtasks is bounded by the grammar

size and the scale of the original task.

• For the second factor, the unfolding procedure and the calculation from sub-results can be

efficiently implemented by the hypercube prefix-sum algorithm [Kumar et al. 1994].

Combining both factors, the time complexity of our algorithm is O (mn2r sp2
m ), wherem represents

the total size of the model lists in the original task, nr represents the number of rules in the grammar,

and sp represents the size of the concrete program in the original task. Therefore, the time cost of

our algorithm to calculate an approximated objective value is polynomial to the grammar size and

exponential to the number of existing examples.

In some extreme cases, the number of examples could be large. To ensure efficiency in these

cases, we set up a limit lime on the number of examples and consider only the latest lime examples

when calculating the approximation. Intuitively, such a truncation may not affect the result much

because the neglected examples have been considered many times in previous iterations.

6 IMPLEMENTATION
We implement the algorithms discussed in Section 5 into a question selector named LearnSy. Our

implementation is in C++ and is available online [Ji et al. 2023b].

Dealing with infinite program spaces. Our approximation requires the program space to be

finite (Section 3.2). Even so, we can generalize it to the infinite case by an iterative truncation of

the program space. When running on an infinite program space, LearnSy iterates with a depth

limit limd and works on a finite subspace including only programs with a depth no larger than

limd . When the depth of the PBE result exceeds limd , LearnSy enlarges limd to the depth of the

PBE result to include this program in the subspace considered.

In our implementation, the initial value of the depth limit is simply set to 1.

Generating candidate inputs. LearnSy uses a generator to generate candidate inputs (Section

2.4). We implement different generators for interactive and non-interactive tasks, respectively.

The generator for interactive tasks follows the framework of interactive program synthesis [Ji

et al. 2020a]. It generates those inputs that distinguish the PBE result from some other remaining
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program. Specifically, this generator encodes the conditions above into an SMT formula by an

existing method [Ji et al. 2020a], and thus generates candidate inputs via an SMT solver.

The generator for non-interactive tasks follows the CEGIS framework [Solar-Lezama et al. 2006].

It generates those inputs where the PBE result outputs incorrectly. Specifically, this generator

assumes that the complete specification of the target program is provided as either an SMT formula

or a list of examples, and thus generates candidate inputs either via an SMT solver or simply by

enumeration.

We use Z3 [de Moura and Bjørner 2008] as the underlying SMT solver and set the upper bound

on the number of candidate inputs as 5.

Learning the PRTG. Our approximation requires a PRTG φ over the program space. We learn this

PRTG in the same way as previous studies [Ji et al. 2020b; Lee et al. 2018]. Given a RTG, the learning

method relies on a set of sample programs in the grammar. For each vertex on the AST of each

sample program, the method records the non-terminal and the first grammar rule corresponding

to each vertex. Then, for each grammar rule r expanding from non-terminal s , the method learns

its probability as the ratio of the number of vertices with rule r to the number of vertices with

non-terminal s .
In our evaluation, sample programs are obtained by 2-fold cross-validation. We divide each

dataset into two halves, learn a PRTG for each half by taking the synthesis targets of tasks in this

half as the samples, and use the PRTG learned for one half to solve tasks in the other half.

Flattening. Our implementation repeatedly applies the flattening operation to improve the preci-

sion of the learned model. LearnSy greedily flattens the rule that expands the fewest programs in

each turn and stops once the number of introduced grammar rules exceeds a limit limf . As will be

discussed in Section 7, by making a trade-off between precision and efficiency, we set limf to 3000

and 100 for interactive and non-interactive tasks, respectively.

While forming OGIS solvers, our implementation invokes the PBE solver with the original

grammar instead of the flattened one to reduce the time rise led by flattening. Since there is a

natural bijection between programs in the original grammar and those in the flattened grammar,

in each OGIS iteration, our implementation invokes the PBE solver with the original grammar,

converts the synthesis result to the corresponding program in the flattened grammar, and then

invoke LearnSy with the flattened grammar. In this way, the time rise led by flattening is limited to

only the question selector.

Other Configuration. We set ns (the number of samples used while learning models) to 10 and

set lime (the limit on the number of examples considered in the approximation) to 3.

7 EVALUATION
To evaluate LearnSy, we report several experiments to answer the following research questions.

• RQ1: Can LearnSy improve the performance of OGIS solvers on interactive tasks?

• RQ2: Can LearnSy improve the performance of OGIS solvers on non-interactive tasks?

• RQ3: How does the prior distribution φ affects the performance of LearnSy?

• RQ4: How does the flattening operator affect the performance of LearnSy?

7.1 Exp 1: Effect of Improving OGIS Solvers on Interactive Tasks
In this experiment, our evaluation is conducted on the interactive synthesizer proposed by Ji et al.

[2020a]. We implement several variants of this synthesizer for LearnSy and two other baseline

selectors and compare these variants on the dataset collected by Ji et al. [2020a].

Baseline. We consider selectors proposed by previous studies on interactive synthesis.
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• RandomSy [Mayer et al. 2015] has no preference for the selected input. It repeatedly selects a

random input until an input distinguishing at least two remaining programs is found.

• SampleSy [Ji et al. 2020a] is a state-of-the-art selector to reduce iterations. It approximates a

strategy for building effective decision trees, but unlike our approach, its approximation is

performed by sampling remaining programs. To ensure quick responses, SampleSy (1) requires

efficient witness functions [Polozov and Gulwani 2015] for all operators in the domain, and

(2) performs sampling in the background when the user is answering the question.

Dataset. The dataset collected by Ji et al. [2020a] is used in this experiment. This dataset involves

two synthesis domains and is adapted from the datasets in SyGuS-Comp [Alur et al. 2017a] by

bounding each program space with a proper depth limit to ensure the termination of the interaction.

• 150 tasks on the domain of string manipulation are included. In these tasks, the specification is

provided as a set of examples whose average size is 45.8, and the average size of the program

space is 4.0 × 1025.
• 16 tasks on the domain of program repair are included, which are extracted from the program

repair process for real-world Java bugs. In these tasks, the specification is provided as an

SMT formula, and the average size of the program space is 2.4 × 108.

Configurations. This experiment is conducted on Intel Core i7-8700 3.2GHz 6-Core Processor. For

each execution, we set the time limit to 60 minutes and the memory limit to 8GB; in other words, if

the time or memory cost of a synthesis procedure exceeds the corresponding limit, the procedure

will be considered to fail. Besides, since many approaches in this experiment are random, we repeat

each execution 3 times and consider only the average performance.

To simulate the interactive scenario, we limit the response time of each OGIS iteration. In practice,

for the sake of the user experience, interactive synthesizers are usually expected to respond within 2

seconds [Ji et al. 2020a], that is, after the user provides the answer, the question selector is expected

to determine the next question within two seconds. In this experiment, we limit the response time

to 2 seconds for LearnSy and all baseline selectors.

• For LearnSy, we set the number limit of rules introduced by flattening (i.e., parameter limf
in Section 6) to 3000. In this case, the response time of LearnSy never exceeds 2 seconds in

our dataset, with an average time of 0.91 second per iteration.

• For RandomSy, this requirement is already satisfied on all tasks in our dataset. Thus, no extra

configuration is required.

The other baseline selector, SampleSy, needs more complex configurations. In each iteration,

SampleSy runs in two stages.

(1) In the first stage, SampleSy performs sampling in the background while the user is answering

the previous question. Therefore, the time limit of this stage correlated to the time the user

needs to respond to the queries. The default implementation of SampleSy assumes this time

to be at least 2 minutes for each question and thus sets the time limit to 2 minutes.

(2) In the second stage, SampleSy selects an input online according to the samples after the user

has responded to the previous question. The time limit for this stage was set to 2 seconds in

our experiment since the time cost in this stage is indeed the response time.

Aside from these configurations, we consider several other variants of SampleSy to simulate

the cases with different question difficulties. We observe that the assumption made by the default

implementation of SampleSy (i.e., the user requires at least two minutes to answer each question)

does not hold for many existing tasks. For example, task phone.sl in dataset IS is about synthesizing
a program that extracts the first three digits from a phone number. In this task, the question is

like “what is the intended output on input 938-242-504”, and the user needs to respond 938. Such
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Table 3. The results of comparing LearnSy with baselines on interactive tasks.

Selector #Solved

#Iteration

Ave RED. for All RED. for Hard

LearnSy

145

3.245
RandomSy 3.756 0.510 13.58% 3.410 39.00%

SampleSy3 3.262 0.016 0.493% 0.615 10.43%

SampleSy5 3.309 0.063 1.910% 0.897 14.52%

SampleSy10 3.287 0.041 1.258% 0.692 11.48%

SampleSy15 3.275 0.029 0.912% 0.487 8.370%

SampleSy 3.251 0.005 0.176% 0.358 6.306%

The average time cost of LearnSy is 0.91 seconds per iteration

a query can be easily answered in seconds. At this time, the user will have to wait for nearly 2

minutes until SampleSy finishes sampling if the default time limit for sampling is used. Therefore, we

introduce a series of variants of SampleSy, denoted as SampleSyt , where the time limit for sampling

is set to t seconds and the time limit for the second stage is still 2 seconds. In this experiment, we

evaluate four choices of t ∈ {3, 5, 10, 15} and compare their performances with LearnSy.

Results. The results of this experiment are summarized in Table 3, organized as follows.

• For each selector, columns “#Solved” and “#Iteration-Ave” report the number of solved tasks

and the average number of iterations used, respectively.

• For each baseline selector, column “#Iteration-RED. for All” reports the absolute/relative

reductions in the average number of iterations achieved by LearnSy.

• For each baseline selector, column “#Iteration-RED. for Hard” reports the absolute/relative

reduction achieved by LearnSy on the hardest 10% of tasks, where the difficulty of a task is

measured as the total number of iterations used by LearnSy and the baseline selector.

In this experiment, all considered OGIS solvers solve the same subset of tasks. This is because the

time limit and memory limit in this experiment are large enough for all selectors so that the OGIS

solver fails only when the underlying synthesizer [Ji et al. 2020a] (which is fixed in this experiment)

violates the requirement on the response time.

The results show that LearnSy outperforms RandomSy and offers competitive performance to

SampleSy. Although SampleSy tends to perform better as the time limit of sampling increases, its

number of iterations is still close to that of LearnSy even when the time limit is as large as 2 minutes.

Note that this time cost of sampling is already more than 100 times larger than the average time

cost of LearnSy.

Besides, the advantage of LearnSy compared with SampleSy becomes more remarkable on the

hard tasks. This tendency is related to the difficulty to sample remaining programs. SampleSy

can get enough samples quickly on simple tasks so that the sampling time becomes insignificant.

However, when processing difficult tasks, SampleSy can hardly collect enough samples within a

short time, leading to its low performance. In our opinion, the performance of a selector on hard

tasks is more important because the user burden when solving these tasks is usually heavier.

In the end, it is noteworthy that the comparably superior performance of LearnSy is achieved

without losing any generality. LearnSy only uses the semantics of programs and the grammar

structure of the program space. As a result, it can be applied to all tasks under the SyGuS framework.

In contrast, RandomSy has a much worse performance despite being general, and SampleSy has a

scope limited to domains with efficient witness functions despite a similar performance to LearnSy.
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Table 4. The datasets of non-interactive tasks considered in our evaluation

Name Size
8

Domain #Operators Spec PBE Solver Selector

CS 205 String 16 Examples Eusolver, MaxFlash Default, SigInp

CI 100 Integer 10 SMT formula Eusolver, PolyGen Default

CB 450 Bit-Vector 10 Examples Eusolver Default, Baised

7.2 Exp 2: Effect of Improving OGIS Solvers on Non-Interactive Tasks
In this experiment, our evaluation is conducted under the CEGIS framework [Solar-Lezama et al.

2006]. We consider three state-of-the-art PBE solvers to form CEGIS solvers. Subsequently, we

implement multiple CEGIS solvers by combining these PBE solvers with LearnSy or baseline

selectors and evaluate these CEGIS solvers on three datasets in SyGuS-Comp.

PBE solvers. LearnSy regards a PBE solver as a black box and thus is capable to combine with any

existing PBE solvers. To test the generality of LearnSy, we consider three PBE solvers based on

completely different techniques, including one general-purpose and two domain-specific solvers.

• Eusolver [Alur et al. 2017b] is a general-purpose solver based on enumeration.

• MaxFlash is a solver specialized for domains with efficient witness functions [Polozov and

Gulwani 2015], such as the domain of string manipulation. It also uses a probabilistic model

to guide the search procedure.

• PolyGen [Ji et al. 2021] is a solver specialized for branch expressions. It uses the theory of

Occam learning to guarantee generalizability [Blumer et al. 1987] and also uses constraint

solvers to efficiently synthesize sub-programs.

Baseline. As no previous question selector can improve the efficiency of CEGIS solvers, we compare

LearnSy with the default selector used in the original CEGIS framework [Solar-Lezama et al. 2006],

denoted as Default. This selector has no preference for the selected input and directly returns the

first found input where the PBE result outputs incorrectly.

Besides, some domain-specific heuristics for input selection have been proposed as optimizations

in previous studies on domain-specific PBE solvers [Jha et al. 2010; Padhi et al. 2018]. They are also

involved as baselines in this experiment:

• Significant input [Padhi et al. 2018] (denoted as SigInp) is specialized for the domain of string

manipulation. It synthesizes the syntactic profile for each input through another synthesis

task and prefers inputs with a different profile compared to those in existing examples
7
.

• Biased Bit-Vector [Jha et al. 2010] (denoted as Biased) is specialized for the domain of bit-

vectors. It is based on the property that for many bit-vector functions, the rightmost bits

in the input influence the output more than the leftmost ones [Warren 2002]. Therefore, it

prefers those inputs with different rightmost bits compared to those in existing examples.

Dataset. We consider three datasets CS,CI, and CB in SyGuS-Comp. These datasets are on three

different domains, and their profiles are shown in Table 4.

Configuration. The configurations are similar to those for interactive tasks except for two changes.

First, the time limit of each execution is reduced to 5 minutes to save time since the number of

non-interactive tasks far exceeds interactive ones. Second, the number limit of rules introduced

by flattening in LearnSy is set to 100 to ensure that the time cost of the question selection has a

7
SigInp is proposed as an application of FlashProfile [Padhi et al. 2018], a synthesizer for syntactic profiles, using a cost

function with several parameters. Since its original implementation has not been released, we re-implement it in our

evaluation using FlashProfile and set all missing parameters as a default constant.
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Table 5. The results of comparing LearnSy with baselines on non-interactive tasks.

Solver Selector #Solved

#Iteration TimeCost (s)

Ave RED. for All Ave RED. for All RED. for Hard

CS

Eusolver

LearnSy 146 2.69 14.4
Default 145 2.82 0.13 4.56% 15.2 0.83 5.46% 8.68 6.61%

SigInp 146 2.61 −0.08 −3.24% 14.9 0.47 3.15% 3.09 2.18%

MaxFlash

LearnSy 159 1.42 0.96
Default 154 1.51 0.09 6.29% 1.41 0.45 31.9% 4.56 24.8%

SigInp 155 1.47 0.06 4.04% 1.57 0.61 38.8% 6.58 32.7%

CI

Eusolver

LearnSy 43 15.1 9.26
Default 42 21.0 5.92 28.2% 12.3 3.06 24.9% 6.68 11.0%

PolyGen

LearnSy 82 34.4 7.27
Default 78 47.8 13.4 28.0% 12.7 5.48 43.0% 59.9 50.4%

CB Eusolver

LearnSy 427 10.2 24.2
Default 424 11.2 0.91 8.16% 27.5 3.32 12.1% 19.0 11.8%

Biased 424 10.9 0.69 6.34% 25.0 0.75 2.99% 1.08 0.76%

limited effect on the efficiency of CEGIS solvers. Under this limit, the time cost of LearnSy is about

0.03 second per iteration, negligible in most cases.

Result. The results of this experiment are summarized in Table 5. For each dataset, each PBE solver,

and each selector, we report the number of solved tasks (column “#Solved”), the average number

of used iterations (column “#Iteration-Ave”)
9
, the absolute/relative reduction in the number of

iterations achieved by LearnSy (column “#Itertion-RED. for All”), the average time cost (column

“TimeCost-Ave”), the absolute/relative reduction in the time cost achieved by LearnSy (column

“TimeCost-RED. for All”), and the reduction in the time cost on the hardest 10% of tasks (column

“TimeCost-RED. for Hard”). In this experiment, the difficulty of tasks is measured as the total time

cost of LearnSy and the baseline selector since efficiency is the primary pursuit for non-interactive

synthesizers. We summarize these results as follows.

First, compared with the default selector, the CEGIS solver with LearnSy is always more efficient

with fewer iterations. By replacing the default selector in the CEGIS framework with LearnSy, the

existing CEGIS solvers can be immediately accelerated with a ratio of up to 43.0%. This improvement

is valuable because of two aspects:

• Generality. As a general selector, LearnSy can be applied to all tasks under the SyGuS

framework regardless of the synthesis domain and the PBE solver. Though the speedup

achieved by LearnSy may not be significant for an individual PBE solver on a concrete

domain, it has the potential to hold for all PBE solvers and all domains. Therefore, the overall

improvement in efficiency should be considerable.

• Originality. Although multiple approaches to reduce the number of iterations are available,

LearnSy provides new insights for question selection (i.e., estimating the behavior of operators

to enable a compositional approximation) and achieves speedups for OGIS solvers by question

selection for the first time. The performance of LearnSy may be enhanced by more desirable

methods to estimate the operators.

Second, LearnSy offers competitive performance to those heuristics (Biased and SigInp). Such a

result is already valuable because both SigInp and Biased are based on domain-specific heuristics

9
In Exp2, the tasks solved by different selectors are not always the same. Therefore, to ensure fair comparisons, only those

tasks solved by all applicable selectors are considered when calculating the average values.
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designed by domain experts while LearnSy is general. Besides, we observe that SigInp performs

slightly better than LearnSy in reducing iterations when combined with EuSolver but only achieves

a smaller speed-up. This is because SigInp selects inputs by solving another synthesis task, whose

time cost is large enough to affect the efficiency of the whole OGIS solver.

Third, we would like to explain why selector SampleSy cannot be applied to improve the efficiency

of the solvers considered in this experiment.

(1) There is no efficient witness function for the domain of integers and bit-vectors, so SampleSy

cannot be used on dataset CI and CB . In brief, a witness function acts as the inverse semantics

of an operator, returning those possible inputs to produce a given input. However, the number

of possible inputs may be too large to enable an efficient witness function for many operators

in these two domains. For example, there are 2
64
possible inputs to output 0 for bvadd, an

operator in the domain of bit-vectors that calculates the sum of two 64-bit vectors after

regarding them as 64-bit unsigned integers.

(2) A full version-space algebra for all remaining programs is required by SampleSy to perform

sampling. As shown in a previous evaluation [Ji et al. 2020b], the time cost to construct the

full version-space algebra is 400 times larger compared to that needed for MaxFlash to find

the PBE result. Therefore, SampleSy can hardly accelerate MaxFlash on CS .

(3) The only possible case to apply SampleSy is to accelerate Eusolver on CS , but this case is still

difficult. In this experiment, Eusolver takes only 5.8 seconds per iteration on average when

the default selector is used. Therefore, the time cost of Eusolver will rise significantly even

with SampleSy
3
.

Finally, the speedups achieved by LearnSy vary among different datasets, different PBE solvers,

and tasks with different difficulties. Theoretically, there are some cases where LearnSy is likely to

achieve higher speedups:

• LearnSy tends to perform better when more examples are required to solve the synthesis

task (as seen in the rows of dataset CI in Table 5). In this case, a larger space to reduce the

number of iterations tends to be present, and an effective question selector can lead to a more

significant performance enhancement.

• LearnSy tends to perform better when the time cost of the PBE solver increases rapidly with

the number of examples (as seen in the rows of MaxFlash in Table 5). In this case, a given

reduction in the number of iterations can result in a more significant drop in the time cost.

• LearnSy tends to perform better on harder tasks. Solving a harder task usually requires more

examples and thus matches the first case discussed. In Table 5, the absolute improvement

achieved by LearnSy is always more significant when only hard tasks are considered.

7.3 Exp 3: Comparison between Different Prior Distributions
LearnSy requires a prior distribution φ, and our implementation of LearnSy uses 2-fold cross-

validation to learnφ by default (Section 6). In this experiment, we test howφ affects the performance

of LearnSy. For simplicity, we consider only one single setting in this experiment, where only

dataset CS and PBE solver MaxFlash are considered.

Baseline. We consider a trivial PRTG where the probability assigned to each rule starting from the

same non-terminal is the same. We denote the variant of LearnSy with this PRTG as LearnSyU and

compare it with the default version.

Configuration. The configurations are exactly the same as those in Exp 2.

Results. The results are summarized in Table 6 in the same way as Table 5. LearnSy outperforms

its invariant LearnSyU , implying a tendency that the precision of φ contributes positively to the
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Table 6. The results of comparing LearnSy with its variants.

PBE Solver Exp Selector #Solved

#Iteration TimeCost (s)

Ave RED. for All Ave RED. for All RED. for Hard

MaxFlash

3

LearnSy 159 1.44 1.97
LearnSyU 155 1.46 0.02 1.25% 2.36 0.39 16.7% 3.98 18.1%

4

LearnSy 159 1.45 2.37
LearnSy

0
158 1.48 0.03 2.15% 2.74 0.37 13.5% 3.99 15.2%

performance of LearnSy. Moreover, even though LearnSyU does not perform as well as LearnSy,

it still outperforms the default CEGIS selector and SigInp (see Section 7.2). Therefore, for those

scenarios where learning a PRTG is difficult, it is still possible to improve OGIS solvers by applying

LearnSy with some pre-defined PRTGs.

7.4 Exp 4: Comparison between Different Usages of Flattening
LearnSy uses flattening to improve the precision of the learned model, and when solving non-

interactive tasks, its default applies flattening repeatedly until the number of introduced rules

exceeds 100. In this experiment, we test how flattening affects the performance of LearnSy.

Similar to Exp 3, only dataset CS and PBE solver MaxFlash are considered in this experiment.

Baseline. We consider a variant of LearnSy where no flattening is applied, denoted as LearnSy
0
,

and compare this variant with the default LearnSy.

Configuration. The configurations are exactly the same as those in Exp 2.

Results. The results are summarized in Table 6 in the same way as Table 5. After applying flattening,

the number of iterations and the time cost of LearnSy are reduced. This finding provides indirect

evidence that the flattening operation can improve the precision of our approximation, which

justifies our theoretical analysis.

8 RELATEDWORK
Question selection for interactive program synthesis. The question selection problem for

interactive program synthesis targets to reduce the user burden by reducing the number of iterations

and has been studied by Ji et al. [2020a] and Tiwari et al. [2020]. Both studies adopt a greedy strategy

for constructing effective decision trees and approximate the strategy by sampling from remaining

programs. Compared to these approaches, LearnSy performs approximation via unified-equivalence

models instead of sampling, leading to a significant improvement in the efficiency of question

selection and wider applications to domains without an efficient sampling algorithm. However, Ji

et al. [2020a] also explore a variant of the question selection problem where a bounded error rate is

allowed. We do not consider this variant in this paper. Applying LearnSy to it is future work.

Many interactive synthesis systems [Ferreira et al. 2021; Mayer et al. 2015; Wang et al. 2017]

include a question selector for input-output examples, whose goal is to find an input where at least

two remaining programs output differently. These question selectors have no preference between

multiple such inputs. Concretely, Mayer et al. [2015] randomly select an input until a valid one is

found, Wang et al. [2017] randomly mutate an existing input until a valid one is found, and Ferreira

et al. [2021] get valid inputs by invoking an SMT solver. We approximate all these approaches as

RandomSy in our evaluation.

Question selection for CEGIS. Several heuristics have been proposed for selecting inputs to

improve the performance of CEGIS solvers. Biased BV [Jha et al. 2010] is proposed for bit-vector

functions, and Significant Input [Padhi et al. 2018] is proposed for string manipulation programs.
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Both of them rely on domain knowledge and cannot be generalized to other domains. To our

knowledge, LearnSy is the first general question selector that can improve the efficiency of state-of-

the-art PBE solvers under the CEGIS framework.

Oracle guided inductive synthesis. Jha and Seshia [2017] establish a formal theory for OGIS.

In this theory, an OGIS solver is formed by an oracle and a learner only, and either of these two

components may fulfill the role of the question selector, depending on the type of queries. For

example, in CEGIS, the query asks for a counterexample for a candidate program, so the input

is selected by the oracle; in interactive program synthesis, the query asks for the corresponding

output for a given input, so the input is selected by the learner. In this paper, to focus on the

question selection problem, we explicitly regard the question selector as a component in OGIS.

Besides, only queries in the form of input-output examples are considered in this paper. This

query form is indeed the most common, but multiple OGIS solvers have been proposed based on

other forms of queries, including (1) selecting a program from a set of given programs [Mayer et al.

2015; Yessenov et al. 2013], (2) selecting the correct output for a given input among several candi-

dates [Ramos et al. 2020], (3) providing input-output examples to refine the specification [Galenson

et al. 2014; Kandel et al. 2011; Narita et al. 2021; Yessenov et al. 2013], and (4) changing the config-

uration of the synthesizer [Barman et al. 2015; Gvero et al. 2011; Kandel et al. 2011; Leung et al.

2015]. Generalizing LearnSy to these queries is future work.

9 CONCLUSION
In this paper, we propose a question selector LearnSy to improve the performance of OGIS solvers

by reducing the number of iterations used for synthesis. LearnSy is based on a greedy strategy

min-pair that finds the input best distinguishing between remaining programs.

To apply the min-pair strategy efficiently in synthesis, we design a compositional approximation

of the objective function in this strategy. The approximation is based on the unified-equivalence

model, which approximates the behavior of operators as random and estimates whether two

programs output the same with probabilities. We prove that this model can provide an unbiased

estimation of the overall equivalence in the program space. In addition, we also prove that the

precision of each estimation can be further improved by an operator named flattening.

Finally, we propose an efficient dynamic-programming algorithm for our approximation and im-

plement it into LearnSy. Our evaluation shows that LearnSy can generally improve the performance

OGIS solvers on both interactive and non-interactive tasks. Such an improvement is completely

free as LearnSy neither requires domain knowledge nor limits the behavior of PBE solvers.
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A PROOFS
In this section, we complete the proofs of the theorems in our paper.

Lemma A.1 (Lemma 4.1). For any two programs p,p ′ and any input I , receq(p,p ′, I ) results in true

if and only if ⟦p⟧(I ) = ⟦p ′⟧(I ).

Proof. Suppose p is f (n) (p1, . . . ,pn ) and p
′
is f ′(n

′) (p ′
1
, . . . ,p ′n′ ). We prove this lemma by induc-

tion on the structure of program p, and there are two different cases.

• When f , f ′ or receq(pi ,p
′
i , I ) does not hold for some index i , the lemma holds because receq

returns the ground truth directly.

• When f = f ′ and receq(pi ,p
′
i , I ) holds for all indices, receq returns true. By the induction

hypothesis, sub-programs pi and p
′
i always output the same on input I for every index i ′.

Because the semantics of f is a function that outputs the same on the same input, p and p ′

must also output the same, so the lemma still holds in this case.

□

Lemma A.2 (Lemma 4.6). For any input I and any PRTG φ, the corresponding natural unified-

equivalence model
˜MI
φ always satisfies the equation below.

E
p,p′∼φ

[
˜MI
φ (p,p

′)
]
= Pr

p,p′∼φ

[
⟦p⟧(I ) = ⟦p ′⟧(I )

]

Proof. We consider a more general form of this lemma, as shown below.

E
p,p′∼φ (s )

[
˜MI
φ (p,p

′)
]
= Pr

p,p′∼φ (s )

[
⟦p⟧(I ) = ⟦p ′⟧(I )

]
(7)

where s is a non-terminal in the grammar, and φ (s ) is the distribution induced from φ over programs

expanding from non-terminal s . The original lemma can be obtained from this form by taking s as
the start non-terminal in the grammar. Since the grammar is acyclic, there is a topological order

s1, . . . , sn of non-terminals where the grammar rules expanded from each non-terminal involve

only previous non-terminals. We prove the general form (Formula 7) by induction on this order.

Suppose the current non-terminal is s , and then the two sides in Formula 7 can be unfolded

as follows, where R (s ) denotes the set of grammar rules expanded from non-terminal s , and φ (r )
denotes the induced distribution over programs expanded from rule r .

E
p,p′∼φ (s )

[
˜MI
φ (p,p

′)
]
=
∑

r,r ′∈R (s )

γ (r )γ (r ′) E
p∼φ (r )
p′∼φ (r ′)

[
˜MI
φ (p,p

′)
]

Pr

p,p′∼φ (s )

[
⟦p⟧(I ) = ⟦p ′⟧(I )

]
=
∑

r,r ′∈R (s )

γ (r )γ (r ′) Pr
p∼φ (r )
p′∼φ (r ′)

[
⟦p⟧(I ) = ⟦p ′⟧(I )

]

Proving the blue terms above are equal is enough to prove Formula 7. There are two possible

cases, depending on whether the two rules r and r ′ are identical.
Case 1: r , r ′. For any program pair (px ,py ) expanded from rules (r , r ′), the following formula

holds by the definition of the natural unified-equivalence model.

˜MI
φ (px ,py ) = cross

[
˜MI
φ

]
(r , r ′) = Pr

p∼φ (r )
p′∼φ (r ′)

[
⟦p⟧(I ) = ⟦p ′⟧(I )

]

The equivalence between blue terms can be obtained by taking expectations for px and py .
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Case 2: r = r ′. Rule r must be in the form of s → f (t1, . . . , tk ) for some symbol f and some

previous non-terminals t1, . . . , tk in the topological order. Let us start by simplifying the expectation.

E
p,p′∼φ (r )

[
˜MI
φ (p,p

′)
]
= w + (1 −w )self

[
˜MI
φ

]
(r ),wherew = E

pi ,p′i∼φ (ti )



k∏
i=1

˜MI
φ (pi ,p

′
i )


The value ofw can be transformed as below by the induction hypothesis.

E
pi ,p′i∼φ (ti )



k∏
i=1

˜MI
φ (pi ,p

′
i )

=

k∏
i=1

E
pi ,p′i∼φ (ti )

[
˜MI
φ (pi ,p

′
i )
]

=

k∏
i=1

Pr

pi ,p′i∼φ (ti )

[
⟦pi ⟧(I ) = ⟦p

′
i ⟧(I )

]

= Pr

pi ,p′i∼φ (ti )



k∧
i=1

⟦pi ⟧(I ) = ⟦p
′
i ⟧(I )


We abbreviate the green predicate as event E. The intended equivalence between blue terms can be

obtained following the derivation below.

E
p,p′∼φ (r )

[
˜MI
φ (p,p

′)
]
= Pr[E] + (1 − Pr[E])self

[
˜MI
φ

]
(r )

= Pr

p,p′∼φ (r )

[
⟦p⟧(I ) = ⟦p ′⟧(I ) ∧ E

]
+ (1 − Pr[E]) Pr

p,p′∼φ (r )

[
⟦p⟧(I ) = ⟦p ′⟧(I )���¬E

]

= Pr

p,p′∼φ (r )

[
⟦p⟧(I ) = ⟦p ′⟧(I ) ∧ E

]
+ Pr

p,p′∼φ (r )

[
⟦p⟧(I ) = ⟦p ′⟧(I ) ∧ ¬E

]

= Pr

p,p′∼φ (r )
Pr

[
⟦p⟧(I ) = ⟦p ′⟧(I )

]

In summary, the induction holds for both cases, and thus the target lemma is obtained.

□

Lemma A.3 (Lemma 4.7). For any input I and any PRTG φ, the equation below holds for every two

programs p,p ′.

E[M(p,p ′)] = ˜MI
φ (p,p

′),whereM = Learn(φ, I)

where the randomness comes from the random samples used in Learn.

Proof. We start by corresponding parameters in M to their counterparts in
˜MI
φ .

E
pi ,p′i∼φ (r )

[
self[M](r )

]
= E

pi ,p′i∼φ (r )



size

{
i ��� ⟦pi ⟧(I ) = ⟦pi ⟧(I

′) ∧ IsSubDiff(pi ,p
′
i , I)

}

size

{
i ��� IsSubDiff(pi ,p

′
i , I)

}


= Pr

p,p′∼φ (r )

[
⟦p⟧(I ) = ⟦p ′⟧(I ) ��� IsSubDiff(p,p

′, I)
]

= self

[
˜MI
φ

]
(r )

E
pi ∼φ (r )
p′i ∼φ (r ′)

[
cross[M](r , r ′)

]
= E

pi ∼φ (r )
p′i ∼φ (r ′)

[
size

{
i ��� ⟦pi ⟧(I ) , ⟦p

′
i ⟧(I )

}/
ns
]

= Pr
p∼φ (r )
p′∼φ (r ′)

Pr

[
⟦p⟧(I ) = ⟦p ′⟧(I )

]

= cross

[
˜MI
φ

]
(r , r ′)
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Based on the above correspondence, the target lemma is direct by induction on the size of p. □

Theorem A.4 (Theorem 4.11). Given two programs p and p ′, an input I , and a unified-equivalence
modelM, let E(p,p ′, I ,M) be a random predicate for the estimation ofM to be exactly the same as

the corresponding recursive procedure receq(p,p ′, I ), which is defined as follows.

E(p,p ′, I ,M) =




xcross ↔ (⟦p⟧(I ) = ⟦p ′⟧(I )) r , r ′(
xself ↔ (⟦p⟧(I ) = ⟦p ′⟧(I ))

)
∧
∧n

i=1 E(pi ,p
′
i , I , ) r = r ′ ∧ IsSubDiff(p,p ′, I )∧n

i=1 E(pi ,p
′
i , I , ) r = r ′ ∧ ¬IsSubDiff(p,p ′, I )

where r denotes the first rule used by p, n denotes the number of sub-programs in p, pi denotes the i-th
sub-program of p, r ′ and p ′i denote the counterparts of p

′
, and xcross and xself are two binary random

variables whose probabilities to be true are cross[M](r , r ′) and self[M](r ), respectively.
Let same(p,p ′, I ,M) be the probability for E(p,p ′, I ,M) to be true. Define acc(φ, I ) as a function

measuring the accuracy of the natural model
˜MI
φ , as shown below.

acc(φ, I ) B E
p,p′∼φ

[
same

(
p,p ′, I , ˜MI

φ

)]
For any input I , any PRTG φ, and any grammar rule r , acc(φr , I ) is always no smaller than acc(φ, I ),
where φr represents the result of flattening grammar rule r in φ.

Proof. The recursive definition of same is direct from the definition of E, as shown below.

same (p,p ′, I ,M) =



���crossM (r , r ′) +
[
⟦p⟧(I ) = ⟦p ′⟧(I )

]
− 1

��� r , r ′

���w + (1 −w )selfM (r ) +
[
⟦p⟧(I ) = ⟦p ′⟧(I )

]
− 1

���
∏
i

same (pi ,p
′
i , I ,M) r = r ′

wherew corresponds to the result of ¬IsSubDiff(p,p ′, I), i.e.,
[∧

i ⟦pi ⟧(I ) = ⟦p
′
i ⟧(I )

]
.

We consider a more general form of the original lemma, as shown below.

E
p,p′∼φ (s )

[
same(p,p ′, I , ˜MI

φ )
]
≤ E

p,p′∼φf (s )

[
same(p,p ′, I , ˜MI

φf )
]

(8)

where f denotes the flattened rule, φf denotes the flattning result, s is a non-terminal in φf , and
φ (s ) is the distribution induced from φ over programs expanding from non-terminal s . The target
lemma is a special case of this form where s is taken as the start non-terminal.

Since φf is acyclic, there is a topological order s1, . . . , sn of non-terminals in φf where the

grammar rules expanded from each non-terminal involve only previous non-terminals. We prove

the general form (Formula 8) by induction on this order.

Let o be the index of the source non-terminal of rule f in the topological order, s be the current
non-terminal in the induction, and t be the index of s . There are three possible cases.
Case 1: t < o. In this case, s is not affected by flattening so the equation in Formula 8 holds.
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Case 2: t = o. Let R (s ) be the set of rules expanded from s , and R0 be the set after excluding f
from R (s ), i.e., R (s ) \ { f }. The left-hand side of Formula 8 can be split into three parts as follows.

E
p,p′∼φ (s )

[
same(p,p ′, I , ˜MI

φ )
]
=
∑

r,r ′∈R (s )

γ (r )γ (r ′) E
p∼φ (r )
p′∼φ (r ′)

[
same

(
p,p ′, I , ˜MI

φ

)]
=
∑

r,r ′∈R0

γ (r )γ (r ′) E
p∼φ (r )
p′∼φ (r ′)

[
same

(
p,p ′, I , ˜MI

φ

)]
+ 2
∑
r ∈R0

γ (r )γ ( f ) E
p∼φ (f )
p′∼φ (r )

[
same

(
p,p ′, I , ˜MI

φ

)]
+ γ ( f )2 E

p,p′∼φ (f )

[
same

(
p,p ′, I , ˜MI

φ

)]
In these three parts, only the blue and green terms are affected by flattening. Therefore, this case can

be finished by proving that both terms are no larger than their counterparts in φf , as shown below,

where Rf is the set of new rules in φf introduced by flattening and γf represents the probability
assigning function in PRTG φf .

∀r ∈ R0,γ ( f ) E
p∼φ (f )
p′∼φ (r )

[
same

(
p,p ′, I , ˜MI

φ

)]
≤
∑
f ′∈Rf

γf ( f
′) E

p∼φf (f
′)

p′∼φf (r )

[
same

(
p,p ′, I , ˜MI

φf

)]
(9)

γ ( f )2 E
p,p′∼φ (f )

[
same

(
p,p ′, I , ˜MI

φ

)]
≤
∑

r,r ′∈Rf

γf (r )γf (r
′) E

p,p′∼φf (f )

[
same

(
p,p ′, I , ˜MI

φf

)]
(10)

For Formula 9 and any rule r in R0, define auxiliary function дr (p) as Prp′∼φ (r ) [⟦p⟧(I ) = ⟦p
′⟧(I )].

Subsequantly, paramteter cross

[
˜MI
φ

]
( f , r ) is equal to

∑
p∈Pf φ (p)д(p), and the left-hand side of

Formula 9 can be transformed as follows.

γ ( f ) E
p∼φ (f )
p′∼φ (r )

[
same

(
p,p ′, I , ˜MI

φ

)]
=
∑
p∈Pf

φ (p)
(
дr (p)cross

[
˜MI
φ

]
( f , r ) + (1 − дr (p))

(
1 − cross

[
˜MI
φ

]
( f , r )

))

=1 − 2
∑
p∈Pf

φ (p)дr (p) + 2
*.
,

∑
p∈Pf

φ (p)дr (p)
+/
-

2

(11)

Besides, for any program p ∈ Pf and its corresponding rule rp in φf , cross
[
˜MI
φf

]
(r , rp ) = дr (p).

So the right-hand side of Formula 10 can be transformed as follows.∑
f ′∈Rf

γf ( f
′) E

p∼φf (f
′)

p′∼φf (r )

[
same

(
p,p ′, I , ˜MI

φf

)]
=
∑
p∈Pf

φ (p)
(
дr (p)cross

[
˜MI
φf

]
(rp , r ) + (1 − дr (p))

(
1 − cross

[
˜MI
φf

]
(rp , r )

))
=1 − 2

∑
p∈Pf

φ (p)дr (p) + 2
∑
p∈Pf

φ (p)дr (p)
2

(12)

By the Cauchy-Buniakowsky-Schwarz Inequality, the following inequality holds.

*.
,

∑
p∈Pf

φ (p)дr (p)
+/
-

2

≤
∑
p∈Pf

(
φ (p)дr (p)

)
2

≤
∑
p∈Pf

φ (p)д2r (p)
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This inequality implies that Term 11 is no larger than Term 12, so Formula 9 holds.

For Formula 10, the right-hand side can be transformed as follows, where Pf represents the set

of programs expanded from rule r in the original PRTG φ.∑
r,r ′∈Rf

γf (r )γf (r
′) E

p∼φf (r )

p′∼φf (r
′)

[
same

(
p,p ′, I , ˜MI

φf

)]
=
∑

p,p′∈Pf

φ (p)φ (p ′)same

(
□p ,□p′, I , ˜M

I
φf

)
=
∑

p,p′∈Pf

φ (p)φ (p ′) = γ 2 ( f )

Following this derivation, Formula 10 must hold because its left-hand side is no larger than γ 2 ( f ).
Case 3: t > o. Both sides of Formula 8 can be unfolded into two cases, depending on whether p

and p ′ are expanded from the same rule. To prove Formula 8, it is enough to show that both cases

of the left-hand side are no larger than their counterparts of the right-hand side.

Case 3.1: p and p ′ are expanded from two different rules r and r ′. The sub-goal here can be

transformed into the following form by unfolding according to the definition of same.

E
p∼φ (r )
p′∼φ (r ′)

[���cross
[
˜MI
φ

]
(r , r ′) +

[
⟦p⟧(I ) = ⟦p ′⟧(I )

]
− 1

���
]

≤ E
p∼φf (r )

p′∼φf (r
′)

[���cross
[
˜MI
φf

]
(r , r ′) +

[
⟦p⟧(I ) = ⟦p ′⟧(I )

]
− 1

���
]

Because the flattening operation does not change the set of programs expanded from each rule and

their probabilities, parameters cross

[
˜MI
φ

]
(r , r ′) and cross

[
˜MI
φf

]
(r , r ′) must be the same. So the

equality in the above formula must hold.

Case 3.2: p and p ′ are expanded from the same rule r . The sub-goal here can be transformed into

the following form by unfolding according to the definition of same.

E
p,p′∼φ (r )


���w + (1 −w )self

[
˜MI
φ

]
(r ) +

[
⟦p⟧(I ) = ⟦p ′⟧(I )

]
− 1

���
∏
i

same
(
pi ,p

′
i , I ,

˜MI
φ

)
≤ E

p,p′∼φf (r )


���w + (1 −w )self

[
˜MI
φf

]
(r ) +

[
⟦p⟧(I ) = ⟦p ′⟧(I )

]
− 1

���
∏
i

same
(
pi ,p

′
i , I ,

˜MI
φf

)
wherew is an abbreviation of IsSubDiff(p,p ′, I ).

Similar to the previous case, parameters self

[
˜MI
φ

]
(r ) and self

[
˜MI
φf

]
(r ) must be the same since

the flattening operation does not change the set of programs expanded from each rule and their

probabilities. Therefore, the sub-goal above can be simplified into the following form, where

non-terminal ti denotes the i-th parameter of rule r .∏
i

E
p,p′∼φ (ti )

[
same

(
p,p ′, I , ˜MI

φ

)]
≤
∏
i

E
p,p′∼φf (ti )

[
same

(
p,p ′, I , ˜MI

φf

)]
This inequality is directly implied by the inductive hypothesis.

In summary, the induction holds in all three cases and thus the target theorem is obtained.

□
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