
167

Generalizable Synthesis through Unification

RUYI JI, Peking University, China
JINGTAO XIA, Peking University, China

YINGFEI XIONG∗, Peking University, China
ZHENJIANG HU, Peking University, China

The generalizability of PBE solvers is the key to the empirical synthesis performance. Despite the importance

of generalizability, related studies on PBE solvers are still limited. In theory, few existing solvers provide

theoretical guarantees on generalizability, and in practice, there is a lack of PBE solvers with satisfactory

generalizability on important domains such as conditional linear integer arithmetic (CLIA). In this paper, we

adopt a concept from the computational learning theory, Occam learning, and perform a comprehensive study

on the framework of synthesis through unification (STUN), a state-of-the-art framework for synthesizing

programs with nested if-then-else operators. We prove that Eusolver, a state-of-the-art STUN solver, does

not satisfy the condition of Occam learning, and then we design a novel STUN solver, PolyGen, of which the

generalizability is theoretically guaranteed by Occam learning. We evaluate PolyGen on the domains of CLIA

and demonstrate that PolyGen significantly outperforms two state-of-the-art PBE solvers on CLIA, Eusolver
and Euphony, on both generalizability and efficiency.

CCS Concepts: • Software and its engineering→ Software notations and tools;General programming
languages.

Additional Key Words and Phrases: Programming by Example, Synthesis through Unification, Occam Learning

ACM Reference Format:
Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu. 2021. Generalizable Synthesis through Unification. Proc.
ACM Program. Lang. 5, OOPSLA, Article 167 (October 2021), 37 pages. https://doi.org/10.1145/3485544

1 INTRODUCTION
In the past decades, oracle-guided inductive program synthesis (OGIS) [Jha and Seshia 2017]

receives much attention. In each iteration of OGIS, an oracle provides input-output examples to

an inductive program synthesizer, or programming-by-example (PBE) synthesizer [Shaw et al.

1975], and the PBE synthesizer generates a program based on the examples. There are two typical

types of OGIS problems. In the first type, the oracle can verify whether the synthesized program is

correct, and provides a counter-example if the program is incorrect. Many applications under the

counter-example guided inductive synthesis (CEGIS) framework [Solar-Lezama et al. 2006] fall into

∗
Corresponding author

Authors’ addresses: Ruyi Ji, Key Lab of High Confidence Software Technologies, Ministry of Education Department

of Computer Science and Technology, EECS, Peking University, Beijing, China, jiruyi910387714@pku.edu.cn; Jingtao

Xia, Key Lab of High Confidence Software Technologies, Ministry of Education Department of Computer Science and

Technology, EECS, Peking University, Beijing, China, xiajt@pku.edu.cn; Yingfei Xiong, Key Lab of High Confidence Software

Technologies, Ministry of Education Department of Computer Science and Technology, EECS, Peking University, Beijing,

China, xiongyf@pku.edu.cn; Zhenjiang Hu, Key Lab of High Confidence Software Technologies, Ministry of Education

Department of Computer Science and Technology, EECS, Peking University, Beijing, China, huzj@pku.edu.cn.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/10-ART167

https://doi.org/10.1145/3485544

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

https://doi.org/10.1145/3485544
https://doi.org/10.1145/3485544

167:2 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

this type. In the second type, the oracle cannot verify the correctness of the synthesized program

but can provide a set of input-output examples. This includes the applications where the oracle

is a black-box program, such as binary programs [Zhai et al. 2016], and applications where the

program is too complex to verify its correctness, e.g., the task involves system calls or complex

loops, such as program repair, second-order execution, and deobfuscation [Blazytko et al. 2017;

David et al. 2020; Jha et al. 2010; Mechtaev et al. 2018, 2015a].

In both types of problems, the generalizability of the PBE solver is the key to synthesis perfor-

mance. In the first type, generalizability significantly affects the efficiency: the fewer examples the

solver needs to synthesize a correct program, the fewer CEGIS iterations the synthesis requires,

and thus the faster the synthesis would be. In the second type, the generalizability of the PBE solver

decides the correctness of the whole OGIS system.

Despite the importance of generalizability, the studies on the generalizability of the existing

PBE solvers are still limited. On the theoretical side, as far as we are aware, no existing PBE solver

provides theoretical guarantees on generalizability. On the practical side, the generalizability of

the existing PBE solvers is not satisfactory. In our evaluation, on a synthesis task for solving the

maximum segment sum problem, Eusolver [Alur et al. 2017], a state-of-the-art PBE solver, uses 393

examples to find the correct program, while our solver uses only 10.

In this paper, we propose a novel PBE solver, PolyGen, that provides a theoretical guarantee on
generalizability by construction.We adopt a concept from the computational learning theory, Occam

learning [Blumer et al. 1987], and prove that PolyGen is an Occam solver, i.e., a PBE solver that

satisfies the condition of Occam learning. A PBE solver is an Occam solver if, for any possible target

program consistent with the given examples, the size of the synthesized program is guaranteed to

be polynomial to the target program and sub-linear to the number of provided examples with a high

probability. In other words, an Occam solver would prefer smaller programs to larger programs

and thus follows the principle of Occam’s Razor. In theory, Blumer et al. [1987] have proved that,

given any expected accuracy, the number of examples needed by an Occam solver to guarantee the

accuracy is bounded by a polynomial on the size of the target program. In practice, Occam learning

has exhibited good generalizability in different domains [Aldous and Vazirani 1995; Angluin and

Laird 1987; Kearns and Li 1988; Kearns and Schapire 1994; Natarajan 1993].

PolyGen follows the synthesis through unification (STUN) [Alur et al. 2015] framework. STUN is a

framework for synthesizing nested if-then-else programs, and the solvers based on STUN such

as Eusolver [Alur et al. 2017] and Euphony [Lee et al. 2018] achieve the state-of-the-art results on

many important benchmarks, e.g., the CLIA track in the SyGuS competition. A typical STUN solver

consists of a term solver and a unifier. First, the term solver synthesizes a set of if-terms, each

being correct for a different subset of the input space, and then the unifier synthesizes if-conditions
that combine the terms into a correct program for the whole input space.

We first analyze a state-of-the-art STUN solver, Eusolver [Alur et al. 2017], and prove that

Eusolver is not an Occam solver. Then we proceed to design PolyGen. A key challenge to designing

an Occam solver is to scale up while satisfying the condition of Occam learning. For example, a

trivial approach to ensuring Occam learning is to enumerate programs from small to large and

return the first program consistent with the examples. However, this approach only scales to small

programs. To ensure scalability, we divide the synthesis task into subtasks, each synthesizing a

subpart of the program, and propagate the condition of Occam learning into a sufficient set of

conditions, where each condition is defined on a subtask. Roughly, these conditions require that

each subtask synthesizes either a small program or a set of programs whose total size is small.

Then, we find efficient synthesis algorithms that meet the respective conditions for each subtask.

We instantiate PolyGen on the domains of conditional linear integer arithmetic (CLIA), and

evaluate PolyGen against Esolver [Alur et al. 2013], the best known PBE solver on CLIA that

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

Generalizable Synthesis through Unification 167:3

always synthesizes the smallest valid program, Eusolver [Alur et al. 2017] and Euphony [Lee et al.

2018], two state-of-the-art PBE solvers on CLIA. Our evaluation is conducted on 100 benchmarks

collected from the dataset of SyGuS-Comp [Alur et al. 2019] and an application of synthesizing

divide-and-conquer algorithms [Farzan and Nicolet 2017]. Besides, our evaluation considers two

major oracle models in OGIS, corresponding to the applications where (1) the oracle can provide a

counter-example for a given program, and (2) the oracle can only generate the correct output for a

given input. Our evaluation results show that:

• Comparing with Esolver, PolyGen achieves almost the same generalizability while solving

9.55 times more benchmarks than Esolver.
• Comparing with Eusolver and Euphony, on efficiency, PolyGen solves 43.08%-90.20% more

benchmarks with ×6.14-×15.07 speed-ups. Besides, on generalizability, Eusolver and Eu-
phony require ×1.12-×2.33 examples comparing with PolyGen on those jointly solved bench-

marks. This ratio raises to at least ×2.27-×3.32 when the survivorship bias is considered.

To sum up, this paper makes the following contributions:

• We adopt the concept of Occam learning to the domain of PBE, prove that Eusolver is not
an Occam solver, and provide a sufficient set of conditions for individual components in the

STUN framework to form an Occam solver (Section 5).

• We design a novel Occam solver based on the STUN framework, PolyGen, by designing

efficient algorithms for the two components that meet the above conditions. (Sections 6, 7).

• We instantiate PolyGen to the domain of CLIA (Section 8) and evaluate PolyGen against

state-of-the-art PBE solvers on CLIA (Section 9). The evaluation results show that PolyGen
significantly outperforms Eusolver and Euphony on both efficiency and generalizability.

2 RELATEDWORK
Generalizability of PBE Solvers. Generalizability is known to be important for PBE solvers, and

there have been different approaches proposed to improve generalizability.

Guided by the principle of Occam’s Razor, a major line of previous work converts the PBE task

into an optimization problem by requiring the solver to find the simplest program [Gulwani 2011;

Liang et al. 2010; Mechtaev et al. 2015b; Raychev et al. 2016]. This method has been evaluated

to be effective in different domains, such as user-interacting PBE systems [Gulwani 2011] and

program repair [Mechtaev et al. 2015b]. However, the usage of this method is limited by efficiency,

as in theory, requiring the optimality of the solution would greatly increase the difficulty of a

problem. For many important domains, there is still a lack of an efficient enough PBE solver

which implementing this method. For example, on the domains of CLIA, our evaluation shows that

Eusolver, a state-of-the-art PBE solver, solves 6.22 times more benchmarks than Esolver [Alur et al.
2013], the known best PBE solver on CLIA that guarantees to return the simplest program.

Comparing with previous work, though our paper is also based on the principle of Occam’s Razor,

we relax the constraint on the PBE solver by adopting the concept of Occam learning [Blumer

et al. 1987] from computational learning theory. Occam learning allows the solver to return a

program that is at most polynomially worse than the optimal and still has theoretical guarantees on

generalizability. While designing an Occam solver, we have more space to improve the efficiency

than designing a solver optimizing the size. In this way, we successfully implement a PBE solver

on CLIA that performs well on both efficiency and generalizability.

Another line of work uses learned models to guide the synthesis procedure, and thus focuses

on only probable programs [Balog et al. 2017; Chen et al. 2019; Devlin et al. 2017; Ji et al. 2020b;

Kalyan et al. 2018; Lee et al. 2018; Menon et al. 2013; Singh and Gulwani 2015]. However, the

efficiency of these approaches depends on domain knowledge. For example, Kalyan et al. [2018] use

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

167:4 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

input-output examples to predict the structure of the target program on the string manipulation

domain: The effectiveness of their model relies on the structural information provided by strings

and thus is unavailable on those unstructured domains, such as CLIA. In our evaluation, we evaluate

a state-of-the-art PBE solver based on learned models, namely Euphony [Lee et al. 2018], and the

result shows that its effectiveness is limited on CLIA.

Besides, Raza and Gulwani [2018] explores another synthesis model to improve the generaliz-

ability of the whole synthesis system. In this model, multiple programs are synthesized at the same

time, and one among them will be selected after the query inputs are given. Such a model can be

combined with existing approaches as well as ours. These approaches can be used at the first stage

of this model to generate programs with better generalizability, and thus it will be more probable

that a user-wanted program will be selected at the second stage. A part of the algorithm proposed

by Raza and Gulwani [2018] shares some similarities with Algorithm 3 in our paper, because both

algorithms are based on a classical approximation algorithm for set covering.
There also exist approaches that improve the generalizability by introducing user interactions

as input to synthesizers [Ji et al. 2020a; Mayer et al. 2015; Padhi et al. 2018; Wang et al. 2017]. An

interactive synthesizer selects inputs according to the ability to reduce the ambiguity and queries

the user for the corresponding output. In this way, the quality of each example increases, and the

number of required examples is reduced. These approaches are orthogonal to our paper and can be

potentially used to further improve the generalizability of our approach, which will be future work.

Analysis on the generalizability. Analyzing the generalizability of learning algorithms is an im-

portant problem in machine learning and has been studied for decades. The probably approximately
correct (PAC) learnability [Valiant 1984] is a widely used framework for analyzing generalizability.

When discussing the PAC learnability of a learning task, the goal is to find a learning algorithm

that (1) runs in polynomial time, (2) requires only a polynomial number of examples to achieve

any requirement on the accuracy. On the synthesis side, there has been a line of previous work

on the PAC learnability of logic programs [Cohen 1995a,b; Dzeroski et al. 1992]. Besides, some

approaches use the framework of PAC learnability to analyze the number of examples required by

some specific algorithm [Drews et al. 2019; Lau et al. 2003].

In this paper, we seek a theoretical model that can compare the generalizability of different PBE

solvers. At this time, the requirement on the generalizability provided by PAC learnability is too

loose: According to the general bound provided by Blumer et al. [1987], when the program space

is finite, this condition is satisfied by any valid PBE solver. Therefore, we adopt another concept,

Occam learning, from computational learning theory. Comparing with PAC learnability, Occam

learning (1) has a higher requirement on generalizability, as shown by Blumer et al. [1987], and (2)

can reflect some empirical results in program synthesis, such as a PBE solver that always returns

the simplest program should have better generalizability than an arbitrary PBE solver. To our

knowledge, we are the first to introduce Occam learning into program synthesis.

Synthesizing CLIA Programs. As mentioned in the introduction, our approach is implemented

on the domains of CLIA. CLIA is important for program synthesis, as CLIA programs widely exist

in real-world projects and can express complex behaviors by using nested if-then-else operators.
There have been many applications of CLIA synthesizers, such as program repair [Le et al. 2017;

Mechtaev et al. 2015b], automated parallelization [Farzan and Nicolet 2017; Morita et al. 2007].

On CLIA, PBE solvers are usually built on the STUN framework [Alur et al. 2015], which firstly

synthesizes a set of if-terms by a term solver, and then unifies them into a program by a unifier.

There are two state-of-the-art STUN solvers:

• Eusolver [Alur et al. 2017], which comprises an enumerative term solver and a unifier based

on a decision-tree learning algorithm.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

Generalizable Synthesis through Unification 167:5

• Euphony [Lee et al. 2018], which uses structural probability to guide the synthesis of Eusolver.
PolyGen also follows the STUN framework. We evaluate PolyGen against these two solvers in

Section 9. The result shows that PolyGen outperforms them on both efficiency and generalizability.

Outside PBE, there are other techniques proposed for synthesizing CLIA programs:

• DryadSynth [Huang et al. 2020] reconciles enumerative and deductive synthesis techniques.

As DryadSynth requires a logic specification, it is not suitable for PBE tasks.

• CVC4 [Reynolds et al. 2019] synthesizes programs from unsatisfiability proofs given by theory

solvers. Though CVC4 is runnable on PBE tasks, it seldom generalizes from examples. We

test CVC4 on a simple task where the target is to synthesize a program that returns the

maximal value among three inputs. After requiring 300 random examples, the error rate of

the program synthesized by CVC4 on a random input is still larger than 97%. In contrast,

PolyGen requires only 12.2 examples on average to synthesize a completely correct program.

There are also approaches on synthesizing boolean conditions, which is an important part in

CLIA [Ernst et al. 2001; Padhi and Millstein 2017]. However, none of them discuss the theoretical

guarantees on the generalizability, and it is unknown whether these approaches are Occam solvers.

3 MOTIVATING EXAMPLE AND APPROACH OVERVIEW
In this section, we introduce the basic idea of our approach via a motivating example adopted

from benchmark mpg_ite2.sl in the SyGuS competition. The target program p∗ is shown as the

following, where x ,y, z are three integer inputs.

p∗ (x ,y, z) B if (x + y ≥ 1) then {

if (x + z ≥ 1) then {x + 1} else {y + 1}

} else {

if (y + z ≥ 1) then {z + 1} else {y + 1}

}

We assume that there are 9 input-output examples provided to the PBE solver. Table 1 lists these

examples, where tuple (x0,y0, z0) in column I represents an input where x ,y, z are set to x0,y0, z0
respectively, and the if-term in column Term represents the executed branch on each example.

Table 1. The input-output examples and the terms in the target program.

ID I O Term ID I O Term ID I O Term

e1 (0, 1, 2) 1

x + 1

e4 (0, 2, 0) 3

y + 1

e7 (0, 0, 1) 2

z + 1e2 (1, 0, 2) 2 e5 (−1, 3, 0) 4 e8 (−3, 3,−2) −1

e3 (−1, 3, 2) 0 e6 (−1, 1,−1) 2 e9 (−1, 0, 4) 5

3.1 Eusolver
In this paper, we focus on designing an Occam solver for PBE tasks. As mentioned before, an Occam

solver should synthesize programs whose size is polynomial to the size of the target program and

sub-linear to the number of provided examples with high probability. Since the target program is

unknown, an Occam solver should satisfy this requirement when the target program is the smallest

valid program (programs consistent with the given input-output examples), and thus prefer smaller

programs to larger programs.

We first show that Eusolver [Alur et al. 2017] may return unnecessarily large programs and thus

is unlikely to be an Occam solver. We shall formally prove that Eusolver is not an Occam solver in

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

167:6 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

(a) The structure of PolyGen. (b) The program synthesized by PolyGen from {e1, . . . , e9 }.

Fig. 1. The left figure shows the structure of PolyGen, where each sub-solver in PolyGen is attached with a
different color. The right figure shows the program synthesized by PolyGen from examples {e1, . . . , e9}, where
colored rectangles show the correspondence between partial programs and sub-solvers.

Section 5.3. Eusolver follows the STUN framework and provides a term solver and a unifier. The

term solver is responsible for synthesizing a term set that jointly covers all the given examples. In

our example, one valid term set is {x + 1,y + 1, z + 1}. A unifier is responsible for synthesizing a

set of conditions to unify the term set into a program with nested if-then-else operators. In our

example, the conditions used in program p∗ are {x + y ≥ 1,x + z ≥ 1,y + z ≥ 1}.

Similar to Occam learning, Eusolver also tries to return small programs. To achieve this, Eusolver
enumerates the terms and the conditions from small to large and then tries to combine the enumer-

ated terms and conditions into a complete program. Though this approach controls the sizes of

individual terms and conditions, it fails to control the number of the terms and the conditions, and

thus may lead to unnecessarily large programs.

The term solver of Eusolver enumerates the terms from small to large and includes a term in the

term set when the set of examples covered by this term (i.e., the term is correct on these examples) is

different from all smaller terms. The term set is complete when all examples are covered. As a result,

this strategy may unnecessarily include many small terms, each covering only a few examples. In

our motivating example, if constants such as −1, . . . , 5 are available, TE will return set {−1, . . . , 5}
instead of {x + 1,y + 1, z + 1}. Though such terms are small, the number of the terms grows with

the number of examples.

The unifier of Eusolver builds a decision tree using the ID3 algorithms. Here the terms are

considered as labels, the enumerated if-conditions are considered as conditions, and a term is a

valid label for an example if it covers the example. However, ID3 is designed for fuzzy classification

problems, uses information gain to select conditions, and may select conditions that negatively

contribute to program synthesis. For example, x ≥ 0 will have good information gain for this

example. In the original sets the three labels x + 1, y + 1 and z + 1 are evenly distributed. Predicate

x ≥ 0 divides the examples into two sets where the distribution becomes uneven: in one set 50% of

the examples are labeled with x + 1, and in the other set only 20% of the examples are labeled x + 1.
However, in both sets, the three labels still exist, and we still have to find conditions to distinguish

them. As a result, selecting x > 0 roughly doubles the size of the synthesized program.

3.2 PolyGen
To synthesize small programs, PolyGen controls not only the size of individual terms and conditions

but also the number of conditions and terms. The structure of PolyGen is shown as Figure 1(a). As

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

Generalizable Synthesis through Unification 167:7

we can see in the figure, PolyGen is built of a set of sub-solvers, each responsible for synthesizing

part of the program. Figure 1(b) lists a program PolyGen synthesizes, and the colored rectangles

show the parts of the program synthesized by the sub-solver with the same color. In the following,

we shall illustrate how PolyGen works.

3.2.1 Term Solver. To control the number of terms, the term solver of PolyGen iterates a threshold

on the number of terms and tries to synthesize a term set whose size is equal to or smaller than this

threshold. The threshold starts with a small number and increases by a constant c in each iteration.

The process terminates if any iteration successfully synthesizes a term set. In each iteration, PolyGen
uses a randomized procedure to synthesize a term set. If a term set exists under a threshold, the

probability that the term solver fails to synthesize a term set is bound by a constant ϵ . Let us assume

that a term set exists within the first iterated threshold. After n iterations, the probability of failing

to synthesize reduces to ϵn , and the possible number of terms is only increased by nc . In other

words, the number of synthesized terms is guaranteed to be small with a high probability.

Now we explain how we implement the randomized procedure to obtain a term set with a

bounded failure probability. We assume there is a domain solver that synthesizes a term based on

a set of examples, and the domain solver is also an Occam solver. For illustration, let us assume

currently the threshold for the number of terms is 3, and in our example there exists at least

one term set T = {x + 1,y + 1, z + 1} under this threshold. The term solver first samples many

subsets of the examples and invokes the domain solver to synthesize a term for each subset. If any

subset is covered by a term in T , the domain solver will have a chance to synthesize the term. For

example, if e1 and e2 are sampled, the domain solver has a chance to synthesize x + 1 because of the
generalizability of the Occam solver. As a result, if we sample enough subsets, we can synthesize

a term in T with any small bounded failure rate. Then for any successfully synthesized subsets,

we repeat this procedure to synthesize terms for the remaining examples. For example, when

x + 1 is synthesized, the procedure continues with examples e4 . . . e9. The procedure ends when no

example remains. Since in each turn the probability of failing to find a term in T is bounded, the

total probability of failing to find the term set T is bounded. Please note the sizes of synthesized

terms are guaranteed to be small as the domain solver is an Occam solver.

In the domain of CLIA, the if-terms are all linear integer expressions, and the domain solver

can be implemented by finding the simplest valid term via linear integer programming, as we shall

show in Section 8.

3.2.2 Unifier. To control the number of conditions, instead of synthesizing a decision tree, the

unifier of PolyGen synthesizes a decision list [Rivest 1987]. In a decision list, each condition distin-

guishes one term from the rest of the terms. Figure 1(b) shows the program synthesized by PolyGen
on examples {e1, . . . , e9}, which is semantically equivalent to the target program p∗. The number of

conditions is equal to the number of terms minus one and thus is bounded.

However, the conditions in a decision list may become larger and thus cannot be synthesized

using an enumerative algorithm. To efficiently synthesize small conditions to distinguish the terms,

we notice that the conditions are in the disjunctive normal forms (DNF) in the initial definition of

decision lists, where a DNF is the disjunction of clauses, a clause is the conjunction of literals, and a

literal is a predicate in the grammar or its negation. Then we design three sub-solvers for different

parts of the conditions. The clause solver synthesizes clauses from the literals, where the literals are

enumerated by size in the same way as Eusolver. The DNF solver synthesizes a DNF formula based

on the clause solver. Finally, the unifier synthesizes all the conditions based on the DNF solver.

Given a set of terms, the unifier create a synthesis subtask for each term t , where the synthesized
program has to return true on example inputs that are covered only by t (positive examples) and

return false on the example inputs that are not covered by t (negative examples). For example,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

167:8 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

when synthesizing the condition for y + 1, e4, e5, e6 are positive examples and e7, e8, e9 are negative
examples. Here e1, e2, e3 are already covered by x + 1. Then the unifier invokes the DNF solver

to solve these tasks. The conditions synthesized are guaranteed to be small if the DNF solver

guarantees to return small conditions.

Before getting into the DNF solver, let us discuss the clause solver first. Given a set of literals,

a set of input-output examples where the output is Boolean, the clause solver returns a clause,

i.e., the conjunction of a subset of literals satisfying all examples. The clause solver reduces this

problem into weighted set covering and uses a standard approximation algorithm [Chvátal 1979] to

solve it. As will be formally proved later, the clause solver is an Occam solver.

Based on the clause solver, we build the DNF solver. The DNF solver synthesizes a set of clauses,

where all clauses should return false for each negative example, and at least one clause should

return true for each positive example. We notice this synthesis problem has the same form as the

term solver: given a set of examples (in this case, a set of positive examples) and an Occam solver

(in this case, the clause solver), we need to synthesize a set of programs (in this case, a set of clauses)

to cover these examples. Therefore, the DNF solver uses the same algorithm as the term solver,

and we uniformly refer to this algorithm as disjunctive synthesis. Since the disjunctive synthesis
algorithm guarantees that the returned program set is small in terms of both the sizes of individual

programs and the number of returned programs, the DNF solver guarantees to return a condition

of small size.

4 OCCAM LEARNING
4.1 Preliminaries: Programming by Example
The problem of programming-by-example (PBE) is usually discussed above an underlying domain

D = (P, I,O, ⟦.⟧D), where P, I,O represent a program space, an input space, and an output space

respectively, ⟦.⟧D is an oracle function that associates a program p ∈ P and an input I ∈ I with
an output in O, denoted as ⟦p⟧D (I). The domain limits the ranges of possibly used programs and

concerned inputs and provides the semantics of these programs.

For simplicity, we make two assumptions on the domain: (1) There is a universal oracle function

⟦.⟧ for all domains; (2) The output space O is always induced by the program space P, the input
space I, and the oracle function ⟦.⟧, i.e., O = {⟦p⟧(I) | p ∈ P, I ∈ I}. In the remainder of this paper,

we abbreviate a domain as a pair (P, I) of a program space and an input space. We shall use notation

F to represent a family of domains, and thus discuss general properties of domains.

PBE [Shaw et al. 1975] is a subproblem of program synthesis where the solver is required to learn

a program from a set of given input-output examples. As this paper focuses on the generalizability

of PBE solvers, we assume that there is at least one program satisfying all given examples: The

problem of determining whether there is a valid program is another domain of program synthesis,

namely unrealizability [Hu et al. 2020; Kim et al. 2021], and is out of the scope of our paper.

Definition 4.1 (Programming by Example). Given a domainD, a PBE taskT ∈ (I×O)∗ is a sequence
of input-output examples. Define T(D) ⊆ (I × O)∗ as the set of PBE tasks where there is at least

one program satisfying all examples. PBE solver S is a function that takes a PBE task as the input,

and returns a program satisfying all given examples, i.e., ∀T ∈ T(D),∀(I ,O) ∈ T , ⟦S(T)⟧(I) = O .

4.2 Occam Learning and Occam Solver
In computational learning theory, Occam learning [Blumer et al. 1987] is proposed to explain the

effectiveness of the principle of Occam’s Razor. In PBE, an Occam solver guarantees that the size of

the synthesized program is at most polynomially larger than the size of the target program.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

Generalizable Synthesis through Unification 167:9

Definition 4.2 (Occam Solver1). For constants α ≥ 1, 0 ≤ β < 1, PBE solver S is an (α , β)-Occam
solver on a family of domains F if there exist constants c,γ > 0 such that for any program domain

D ∈ F, for any target program p∗ ∈ P, for any input set {I1, . . . , In } ⊆ I, for any error rate ϵ ∈
(
0, 1

2

)
:

Pr

[
size

(
S
(
T (p∗, I1, . . . , In)

))
> c (size(p∗))α nβ lnγ

(
1

ϵ

)]
≤ ϵ

where size(p) is the length of the binary representation of program p, T (p∗, I1, . . . , In) is defined as

the PBE task corresponding to target program p∗ and inputs I1, . . . , In .

We assume the program domain is defined by a context-free grammar. At this time, a program

can be represented by its left-most derivation and can be encoded as a sequence of grammar rules.

Definition 4.3. The size size(p) of program p is defined as ⌈log
2
N ⌉ × |p |, where |p | is the number

of grammar rules used to derive p, and N is the number of different grammar rules.

Example 4.4. When only input variable x , operator + and constants 1, 2 are available in the

grammar, size(x + 1) is defined as ⌈log
2
4⌉ × 3 = 6. When there are a input variables, b constants

and c different operators available, size(x + 1) is defined as 3⌈log
2
(a + b + c)⌉.

The size provides a logarithmic upper bound on the number of programs no larger than p.

Lemma 4.5. For any domain D, ∀p ∈ P, ��
{
p ′ ∈ P | size(p ′) ≤ size(p)

}�� ≤ 2
size(p) .

Blumer et al. [1987] analyze Occam solvers under the probably approximately correct (PAC)
learnability framework and proves that the generalizability of Occam solvers is always guaranteed.

Theorem 4.6. Let S be an (α , β)-Occam solver on domain D. Then there exist constants c,γ > 0

such that for any 0 < ϵ,δ < 1, for any distribution D over I and any target program p∗ ∈ P:

∀n > c *
,

1

ϵ
ln

(
2

δ

)
+

(
(size(p∗))α ln

γ (2/δ)

ϵ

)
1/(1−β)

+
-
, Pr
Ii∼D

[
errD,p∗

(
S
(
T (p∗, I1, . . . , In)

))
≥ ϵ

]
≤ δ

where errD,p∗ (p) represents the error rate of program p when the input distribution is D and the target
program is p∗, i.e., errD,p∗ (p) B PrI∼D [⟦p⟧(I) , ⟦p∗⟧(I)].

Due to the space limit, we move all proofs to our appendix [Ji et al. 2021].

When ϵ and δ are fixed, Theorem 4.6 implies that an (α , β)−Occam solver can find a program

similar to the target p∗ with onlyO
(
size(p∗)α /(1−β)

)
examples. Such a bound matches the principle

of Occam’s Razor, as it increases monotonically when the size of the target program increases.

The class of Occam solvers can reflect the practical generalizability of PBE solvers. Let us take

two primitive solvers Smin and Srand as an example. For any PBE task T , let P(T) ⊆ P be the set of
programs that are consistent with examples in T .

• Srand is the most trivial synthesizer that has no guarantee on the quality of the result. It just

uniformly returns a program from P(T): ∀p ∈ P(T), Pr [Srand (T) = p] = |P(T) |
−1
.

• Smin regards a PBE task as an optimization problem, and always returns the syntactically

smallest program in P(T): Smin (T) B argminp∈P(T) size(p).

In practice, it is usually believed that Smin has better generalizability than Srand. We prove that

the class of Occam solvers can discover this advantage, as Smin is an Occam solver but Srand is not.

Theorem 4.7. Let FA be the family of all possible domains. Then Smin is an (1, 0)-Occam solver on
FA, and Srand is not an Occam solver on FA.
1
The original definition of Occam solvers is only for deterministic algorithms. Here we extend its definition to random

algorithms. We compare these two definitions in the appendix [Ji et al. 2021].

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

167:10 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

5 SYNTHESIS THROUGH UNIFICATION
5.1 Preliminaries: Synthesis through Unification
The framework of synthesis through unification (STUN) focuses on synthesizing programs with

nested if-then-else operators. Formally, STUN assumes that the program space can be decom-

posed into two subspaces, for if-conditions and if-terms respectively.

Definition 5.1. A program space P is a conditional program space if and only if there exist two

program spaces Pt and Pc such that P is the smallest set of programs such that:

P = Pt ∪
{
if c then p1 else p2 | p1,p2 ∈ P, c ∈ Pc

}
We use pair (Pt ,Pc) to denote a conditional program space derived from term space Pt and

condition space Pc . Besides, we call a domain D conditional if the program space in D is conditional.

A STUN solver synthesizes programs in two steps:

(1) A term solver is invoked to synthesize a set of programs P ⊆ Pt such that for any input, there

is always a consistent program in P .
(2) A unifier is invoked to synthesize a valid program from conditional program space (P ,Pc).

In this paper, we only consider the specialized version of the STUN framework on PBE tasks.

Definition 5.2 (Term Solver). Given conditional domain D, term solver T : T(D) → P(Pt) returns
a set of terms covering all examples in a given PBE task, where P(Pt) denotes the power set of Pt :

∀T ∈ T(D),∀(I ,O) ∈ T ,∃p ∈ T(T), ⟦p⟧(I) = O

Definition 5.3 (Unifier). Given a conditional domain D, a unifier U is a function such that for any

set of terms P ⊆ Pt , U(P) is a valid PBE solver for (P ,Pc).

A STUN solver consists of a term solver T and a unifier U. Given a PBE taskT , the solver returns
U(T(T)) (T) as the synthesis result. Alur et al. [2015] prove that such a combination is complete

when the conditional domain is if-closed. For other domains, STUN can be extended to be complete

by backtracking to the term solver when the unifier fails [Alur et al. 2015, 2017].

Definition 5.4 (If-Closed). A conditional domain D is if-closed if:

∀p1,p2 ∈ Pt ,∃c ∈ Pc ,∀I ∈ I, (⟦c⟧(I) ⇐⇒ ⟦p1⟧(I) = ⟦p2⟧(I))

Please note that any conditional domain with equality is if-closed, as c can be constructed by

testing the equality between the outputs of p1 and p2. In the rest of the paper, we assume the

conditional program space is if-closed, and use FC to denote a family of if-closed domains.

Eusolver [Alur et al. 2017] is a state-of-the-art solver following the STUN framework. It takes

efficiency and generalizability as its design purposes and makes a trade-off between them.

The term solver TE in Eusolver is motivated by Smin. TE enumerates terms in Pt in the increasing

order of the size. For each term t , if no smaller term covers the same set of examples as t does, t
will be included in the result. TE returns when the result is enough to cover all examples.

The unifier UE in Eusolver regards nested if-then-else operators as a decision tree, and uses

ID3 [Quinlan 1986], a standard decision-tree learning algorithm, to unify the terms. UE learns

a decision tree recursively: In each recursion, it first tries to use a term to cover all remaining

examples. If there is no such term, UE will heuristically pick up a condition c from Pc as the

if-condition. According to the semantics of c , the examples will be divided into two parts, which

will be used to synthesize the then-branch and the else-branch respectively.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

Generalizable Synthesis through Unification 167:11

5.2 Generalizability of STUN
In this section, we study the generalizability of the STUN framework. To start, we extend the

concept of Occam solvers to term solvers and unifiers: For an Occam term solver, there should be a

polynomial bound on the total size of synthesized terms, and for an Occam unifier, the induced

PBE solver should always be an Occam solver for any possible term set. These definitions will be

used to guide our design of PolyGen later.

Definition 5.5. For constants α ≥ 1, 0 ≤ β < 1, term solver T is an (α , β)-Occam term solver

on FC if there exist constants c,γ > 0 such that for any domain D ∈ FC , for any target program

p∗ ∈ P, for any input set {I1, . . . , In } ⊆ I, for any error rate ϵ ∈
(
0, 1

2

)
:

Pr

[
tsize

(
T
(
T (p∗, I1, . . . , In)

))
> c (size(p∗))α nβ lnγ

(
1

ϵ

)]
≤ ϵ

where tsize(P) is the total size of terms in term set P , i.e.,
∑

t ∈P size(t).

Definition 5.6. For constants α ≥ 1, 0 ≤ β < 1, unifier U is an (α , β)-Occam unifier on FC if there

exist constants c,γ > 0 such that for any domain D ∈ FC , for any term set P ⊆ Pt , for any target

program p∗ ∈ (P ,Pt), for any input set I⃗ = {I1, . . . , In } ⊆ I, for any error rate ϵ ∈
(
0, 1

2

)
:

Pr

[
size

(
U(P)

(
T (p∗, I1, . . . , In)

))
> c

(
max(size(p∗), tsize(P))

)α
nβ lnγ

(
1

ϵ

)]
≤ ϵ

In Definition 5.6, besides the size of the target program, the bound also refers to the total size of

P . Such relaxation allows the unifier to use more examples when a large term set is provided.

Based on the above definitions, we prove that under some conditions, a STUN solver comprised

of an Occam term solver and an Occam unifier is also an Occam solver.

Theorem 5.7. Let T be an (α1, β1)-Occam term solver on FC , U be an (α2, β2)-Occam unifier on FC
where β1α2 + β2 < 1. Then the STUN solver comprised of T and U is an ((α1 + 1)α2, β1α2 + β2)-Occam
solver on FC .

5.3 Generalizability of Eusolver
In this section, we analyze the generalizability of Eusolver and prove that Eusolver is not an Occam

solver. We start from the term solver TE . As TE enumerates terms in the increasing order of the

size, TE guarantees that all synthesized terms are small. However, the main problem of TE is that it

does not control the total number of synthesized terms. Therefore, the total size of the term set

returned by TE can be extremely large, as shown in Example 5.8.

Example 5.8. Consider the following term space Pnt , input space I
n
t and target program p:

Pnt = {2, 3, . . . ,n + 1,x + 1} I
n
t = [1,n] ∩ Z p = x + 1

As p is the largest term in Pnt , on any input x0 in I
n
t , there is always a smaller term c that performs

the same as p, where c is a constant equal to x0 + 1. Therefore, whatever the PBE task is, TE always

returns a subset of PA = {2, 3, . . . ,n + 1} and never enumerates to the target program p.
When all inputs in Int are included in the PBE task, the term set synthesized by TE is always

PA. At this time, the total size of PA is n⌈log
2
(n + 3)⌉, the number of examples is n and the size

of the target program is ⌈log
2
(n + 3)⌉. Clearly, there are no α ≥ 1, 0 < β < 1 and c > 0 such that

∀n, tsize(PA) ≤ c (size(p))α nβ . Therefore, TE is not an Occam term solver.

Moreover, at this time, the program synthesized by Eusolver must utilize all terms in PA, and
thus its size is no smaller than tsize(PA). So Eusolver is not an Occam solver as well.

The following fact comes from Example 5.8 immediately.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

167:12 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

Theorem 5.9. TE is not an Occam term solver on FA
C , and Eusolver is not an Occam solver on FA

C ,
where FA

C is the family of all if-closed conditional domains.

The generalizability of UE is related to the underlying decision-tree learning algorithm ID3.
Hancock et al. [1995] prove that there is no polynomial-time algorithm for learning decision trees

that generalizes within a polynomial number of examples unless NP = RP, where RP represents

the class of polynomial-time random algorithms with one-side error. Combining with Theorem 4.6,

we obtain the following lemma, which implies that UE is unlikely to be an Occam unifier.

Theorem 5.10. There is no polynomial-time Occam unifier on FA
C unless NP = RP.

These results indicate that (1) Eusolver itself is not an Occam solver, and (2) if we would like to

design an Occam solver following Theorem 5.7, neither TE nor UE can be reused.

6 TERM SOLVER
6.1 Overview
For an Occam term solver, the total size of returned terms should be bounded. Therefore, a term

solver must be an Occam solver if (1) the number of returned terms is bounded, and (2) the maximal

size of returned terms is bounded.

Lemma 6.1. For constants α1,α2 ≥ 0, 0 ≤ β1, β2 < 1 where β1 + β2 < 1, term solver T is an
(α1 + α2, β1 + β2)-Occam solver on FC if there exist constants c,γ > 0 such that for any conditional
domain D ∈ FC , any target program p∗ ∈ P, and any input set {I1, . . . , In } ⊆ I:
(1) With a high probability, the size of terms returned by T is bounded by size(p∗)α1nβ1 .

Pr

[
max

{
size(p) ��� p ∈ T

(
(I1, ⟦p⟧(I1)), . . . , (In , ⟦p⟧(In))

)}
> c (size(p∗))α1 nβ1 lnγ

(
1

ϵ

)]
≤ ϵ

(2) With a high probability, the number of terms returned by T is bounded by size(p∗)α2nβ2 .

Pr

[���T
(
(I1, ⟦p⟧(I1)), . . . , (In , ⟦p⟧(In))

) ��� > c (size(p∗))α2 nβ2 lnγ
(
1

ϵ

)]
≤ ϵ

In Lemma 6.1, the first condition has a form similar to the guarantee provided by an Occam

solver. Motivated by this point, we design Tpoly as a meta-solver that takes an Occam solver St on

the term space as an input. To solve a term finding task, Tpoly firstly decomposes it into several

standard PBE tasks and then invokes St to synthesize terms with bounded sizes.

One challenge is that in a term finding task, different examples correspond to different target

terms, i.e., if-terms used in the target program. To find a target term using St , T should pick up

enough examples that correspond to the same target term. To do so, we utilize the fact that there

must be a target term that covers a considerable portion of all examples, as shown in Lemma 6.2.

Lemma 6.2. Let T be a PBE task, and let P be a set of terms that covers all examples in T , i.e.,
∀(I ,O) ∈ T ,∃p ∈ P , (⟦p⟧(I) = O). There is always a term p ∈ P such that:

���
{
(I ,O) ∈ T ��� ⟦p⟧(I) = O

}��� ≥ |T |/|P |

Given a term finding taskT where P∗ is the set of target terms, let t∗ ∈ P∗ be the term that covers

the most examples. According to Lemma 6.2, if we randomly select nt examples from T , term t∗

will be consistent with all selected examples with a probability of at least |P∗ |−nt . Therefore, Tpoly

repeatedly invokes St on a small set of random examples drawn from T : When the generalizability

of St is guaranteed on term space Pt , the number of examples and the number of turns are large

enough, Tpoly will find a term semantically similar with t∗ with a high probability.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

Generalizable Synthesis through Unification 167:13

Algorithm 1: The term solver Tpoly in PolyGen.
Input: A PBE task T , an (α , β)-Occam sovler St on the term space Pt and a constant c .
Output: A set of programs P that covers all examples.

1 Function GetCandidatePrograms(examples, k , nt , s):
2 result← {};
3 for each turn ∈ [1,nt × knt] do
4 Uniformly and independently samples nt examples e1, . . . , ent from examples;
5 p ← St

(
e1, . . . , ent

)
;

6 if p , ⊥ ∧ |Covered(p, examples)| ≥ |examples|/k ∧ size(p) ≤ csαn
β
t then

7 result← result ∪ {p};
8 end
9 end

10 return result;
11 Function Search(examples, k , nt , s):
12 if |examples| = 0 then return {};
13 if (examples, k) is visited before or k = 0 then return ⊥;
14 for each p ∈ GetCandidatePrograms(examples,k,nt , s) do
15 searchResult ← Search(examples − Covered(p, examples),k − 1,nt , s);
16 if searchResult , ⊥ then return {p} ∪ searchResult;
17 end
18 return ⊥;
19 s ← 1;

20 while True do
21 nl ← csα /(1−β) ; kl ← cs ln |T |;

22 for each (k,nt) ∈ [1,kl] × [1,nl] do
23 if (k,nt) has not been visited before then
24 P ← Search(T ,k,nt , s);

25 if P , ⊥ then return P ;

26 end
27 end
28 s ← s + 1;

29 end

For the second condition, Tpoly assumes that there is an upper bound k , and searches among

term sets with at most k terms. If the search process guarantees to find a valid term set with a

high probability when k is larger than a small bound, which is polynomial to the size of the target

program and sub-linear to the number of examples, the second condition of Lemma 6.1 can be

satisfied by iteratively trying all possible k from small to large.

6.2 Algorithm
The pseudo-code of Tpoly is shown as Algorithm 1. Tpoly is configured by a domain solver St , which

is used to synthesize terms, and a constant c , which is used to configure bounds used in Tpoly. We

assume that St can discover the case where there is no valid solution, and returns ⊥ at this time.

The algorithm of Tpoly is comprised of three parts. The first part implements the random sampling

discussed previously, as function GetCandidatePrograms() (abbreviated as Get()). Get() takes
four inputs: examples is a set of input-output examples, k is an upper bound on the number of

terms, nt is the number of examples provided to St and s is an upper bound on the size of terms.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

167:14 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

Guided by Lemma 6.2, Get() returns a set of programs that covers at least k−1 portion of examples.

The body of Get() is a repeated sampling process (Line 3). In each turn, nt examples are sampled

(Line 4), and solver St is invoked to synthesize a program from these sampled examples (Line 5).

Get() collects all valid results (Line 7) and returns them to Search() (Line 10).

Note that Get() only considers those programs of which the sizes are at most csαn
β
t (Line 6). This

bound comes from the definition of Occam solvers (Definition 4.2): When all examples provided to

St correspond to the same target term and the size of this term is at most s , with a high probability,

the term found by St will be no larger than csαn
β
t . However, in other cases, the selected examples

may happen to correspond to some other unwanted terms: At this time, the term found by St may

be much larger than the target term. Therefore, Tpoly sets this limitation on the size and rejects those

programs that are too large. This bound can be safely replaced by any function that is polynomial

to s and sub-linear to nt without affecting Tpoly to be an Occam term solver.

The second part implements the backtracking as function Search() (Lines 11-18). Given a set of

examples examples and size limit k , Search() searches for a set of at most k terms that covers all

examples. Search() invokes function Get() to obtain a set of possible terms (Line 14), and then

recursively tries each of them until a valid term set is found (Lines 15-16).

The third part of Tpoly selects proper values for k,nt and s iteratively (Lines 19-29). In each turn,

Tpoly considers the case where the number of target terms and their sizes are all O (s) and select

proper values for nt and k in the following ways:

• By Theorem 4.6, when the size of the target term isO (s), St requiresO (sα /(1−β)) examples to

guarantee the accuracy. Therefore, Tpoly sets the upper bound of nt to cs
α /(1−β)

.

• Also by Theorem 4.6, when nt is set to cs
α /(1−β)

, the term synthesized by St may still differ

with the target term on a constant portion of inputs. As a result, Tpoly may use O (lnn) times

more terms to cover all examples in T . Therefore, Tpoly sets the upper bound of k to cs lnn.

As the time cost of Get() and Search() grows rapidly when k and nt increases, Tpoly tries all

values of k and nt from small to large (Lines 22-27), instead of directly using the largest possible k
and nt . The iteration ends immediately when a valid term set is found (Line 25).

6.3 Properties of Tpoly

In this section, we discuss the properties of Tpoly. As a meta solver, Tpoly guarantees to be an Occam

term solver when St is an Occam solver on the term space.

Theorem 6.3. St is an (α , β)-Occam solver onT (FC) =⇒ Tpoly is an (α ′+1, β ′)-Occam term solver
on FC for any α ′ > α , β < β ′ < 1, where T (FC) is defined as {(Pt , I′) | ((Pt ,Pc), I) ∈ FC , I

′ ⊆ I}.

Then, we discuss the time cost of Tpoly. With a high probability, Tpoly invokes Search() only

polynomial times, but the time cost of Search() may not be polynomial. By Algorithm 1, an

invocation of Search() of depth i on the recursion tree samples nt (k − i)
nt

times. In the worst

case, St successfully synthesizes programs for all these samples, and the results are all different.

At this time, Search() will recurse into nt (k − i)
nt

different branches. Therefore, for each nt ,k ,
domain solver St will be invoked n

k
t (k!)

nt
times in the worst case.

However, in practice, Tpoly is usually much faster than the worst-case because:

• The domain solver St usually fails when the random examples correspond to different target

terms, as the expressive ability of term domain Pt is usually limited.

• For those incorrect terms that happen to be synthesized, they seldom satisfy the requirement

on the size and the number of covered examples (Line 6 in Algorithm 1).

In the best case where Get() never returns a term that is not used by the target program, St will

be invoked at most nt2
kknt times: Such a bound is much smaller than the worst case.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

Generalizable Synthesis through Unification 167:15

Algorithm 2: The framework of Upoly.

Input: A term set P = {p1, . . . ,pm }, a PBE task T and a condition solver C.

Output: A program in (P ,Pc) satisying all examples.

1 conditionList← {};
2 for i ← 1; i < m; i ← i + 1 do
3 examples← {(I , false) | (I ,O) ∈ T − Covered(pi ,T)};

4 examples←
{
(I , true) | (I ,O) ∈ Covered(pi ,T) −

⋃m
j=i+1 Covered(pj ,T)

}
;

5 ci ← C(examples);
6 conditionList.Append(ci); T ← {(I ,O) ∈ T | ¬⟦ci ⟧(I)};

7 end
8 result← pm ;

9 for i ←m − 1; i > 0; i ← i − 1 do
10 result← (if conditionListi then pi else result);
11 end
12 return result;

7 UNIFIER
7.1 Overview
Upoly unifies terms into a decision list, a structure proposed by Rivest [1987] for compactly repre-

senting decision procedures. Upoly unifies a term set P = {p1, . . . ,pm } into the following form:

if (c1) then p1 else if (c2) then p2 else . . . if (cm−1) then pm−1 else pm

where c1, . . . , cm−1 belong to DNF(Pc), the disjunctive normal form comprised of conditions in Pc .
DNF(Pc) is defined together with another two sets L(Pc) and CL(Pc), where the set of literals L(Pc)
includes conditions in Pc and their negations, the set of clauses CL(Pc) includes the conjunctions of
subsets of L(Pc), and the set of DNF formulas DNF(Pc) includes disjunctions of subsets of CL(Pc).

We use notation (Pt ,Pc)DL to denote the set of decision lists where if-terms and if-conditions
belong to Pt and DNF(Pc) respectively. In the following lemma, we show that (Pt ,Pc)DL is a suitable
normal form for designing an Occam unifier, because for any program in (Pt ,Pc), there is always a
semantically equivalent program in (Pt ,Pc)DL with a close size.

Lemma 7.1. For any conditional domain D and any program p ∈ (Pt ,Pc), there exists a program
p ′ ∈ (Pt ,Pc)DL such that (1) p ′ is semantically equivalent to p on I, and (2) size(p ′) ≤ 2size(p)2.

Upoly decomposes the unification task intom−1 PBE tasks for c1, . . . , cm−1 respectively. Algorithm
2 shows the framework of Upoly, which synthesizes conditions in order (Lines 2-7). For each term

pi and each remaining example e = (I ,O), there are three possible cases:

• If pi is not consistent with e , the value of if-condition ci must be False on input I (Line 3).
• If pi is the only program in pi , . . . ,pn that is consistent with e , the value of ci must be True
on input I (Line 4).
• Otherwise, the value of ci does not matter, as pi is not the last choice. Therefore,Upoly ignores

this example: If the synthesized ci is false on input I , e will be left to subsequent terms.

In this way, Upoly obtains a PBE task for ci , and it invokes a DNF solver C to solve it (Line 5). Then,

Upoly excludes all examples covered by ci (Line 6) and moves to the next term. At last, Upoly unifies

all terms and conditions into a complete program (Lines 8-11).

Just like Tpoly, unifier Upoly is an Occam unifier when C is an Occam solver on DNF(Pc).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

167:16 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

Algorithm 3: The pseudo code of clause solver CCL.

Input: A condition space Pc and a PBE task T .
Output: A program in CL(Pc) satisfying all examples or ⊥.

1 Function SimplifyClause(cu ,T):
2 remNeg← IN (T); c∗ ← ∅;

3 while remNeg , ∅ do
4 l∗ ← argmaxl ∈cu

(
|N (I(T), l) ∩ remNeg|/size(l)

)
;

5 c∗ ← c∗ ∪ {l∗}; remNeg← remNeg − N (I(T), l);

6 end
7 return c∗.

8 cu ← {l ∈ L(Pc) | IP (T) ⊆ P (I(T), l)};

9 if IN (T) ⊈ N (I(T), cu) then return ⊥;
10 return pc (SimplifyClause(cu ,T));

Lemma 7.2. C is an (α , β)-Occam solver on DNF(FC) ⇒ Upoly is an (4α ′, β)-Occam unifier on FC
for any α ′ > α , where DNF(FC) is defined as {(DNF(Pc), I′) | ((Pt ,Pc), I) ∈ FC , I

′ ⊆ I}.
C is a deterministic (α , β)−Occam solver on DNF(FC) ⇒ Upoly is a (4α , β)−Occam unifier on FC .

By Lemma 7.2, the only problem remaining is to design an Occam solver for DNF(FC). We shall

gradually build such a condition solver in the following two subsections.

7.2 Condition Synthesis for Clauses
For the sake of simplicity, we start by introducing some useful notations:

• We regard a DNF formula d as a set of clauses and regard a clause c as a set of literals. We

use notation pc (c) and pd (d) to represent their corresponding program respectively.

• For an input space I and a condition p, we use P (I,p) and N (I,p) to denote the set of inputs

where p is evaluated to true and false respectively.

• For a PBE task T , we use I(T), IP (T) and IN (T) to denote the inputs of examples, positive

examples and negative examples in T respectively, i.e.:

I(T) B {I | (I ,O) ∈ T } IP (T) B {I | (I , true) ∈ T } IN (T) B {I | (I , false) ∈ T }

For a PBE task T on domain (DNF(Pc), I), a valid condition p should satisfy the following two

conditions: (1) p takes true on all positive examples in T , i.e., IP (T) ⊆ P (I(T),p); (2) p takes false
on all negative examples in T , i.e., IN (T) ⊆ N (I(T),p). In this section, we build solver CCL for the

subproblem where the target condition is assumed to be a single clause.

The pseudo-code of CCL is shown as Algorithm 3. CCL starts with the first condition of valid

clauses: IP (T) ⊆ P (I(T), c). By the semantics of operator and, for any clause c and any literal

l ∈ c , P (I(T), c) must be a subset of P (I(T), l). Therefore, only those literals that cover all positive

examples can be used in the result. CCL collects all these literals as clause cu (Line 8). Then the

subsets of cu are exactly those clauses satisfying the first condition.

The remaining task is to find a subset c∗ of cu that satisfies the second condition, i.e., IN (T) ⊆
N (I(T), c∗) = ∪l ∈c∗N (I(T), l). Meanwhile, to make CCL an Occam solver, the size of pc (c

∗) should
be as small as possible. This problem is an instance of weighted set covering: CCL needs to select

some sets from {N (I(T), l) | l ∈ c∗} to cover IN (T).Weighted set covering is known to be difficult:

Moshkovitz [2011] proves that for any ϵ > 0, there is no polynomial-time algorithm that always

finds a solution at most (1− ϵ) lnn times wrose than the optimal, unless NP = P, where n is |IN (T) |
in our case.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

Generalizable Synthesis through Unification 167:17

In our implementation, we use a standard greedy algorithm for weighted set covering, which

runs in polynomial time and always finds a solution at most (lnn + 1) times worse than the optimal

(Lines 1-7). CCL maintains set remNeg, representing the set of negative examples that have not

been covered yet (Line 3). In each turn, CCL selects the literal l
∗
which covers the most uncovered

negative examples in each unit of size (Line 5) and includes l∗ into the result (Line 6).

The size of the clause found by CCL is bounded, as shown in Lemma 7.3. Therefore, CCL is an

Occam solver, as shown in Corollary 7.4. The time complexity of CCL is polynomial to |Pc | and |T |,
and thus CCL is efficient when Pc is not large.

Lemma 7.3. Given condition space Pc and PBE task T , let c∗ be the smallest valid clause and c be
the clause found by CCL. Then size(pc (c)) < 2size(pc (c∗)) (ln |T | + 1).

Corollary 7.4. For any 0 < β < 1, CCL is an (1, β)-Occam solver on all possible clause domains.

7.3 Condition Synthesis for Disjunctive Normal Forms
In this section, we implement an Occam solver C for disjunctive normal forms. By the semantics of

operator or, we could obtain a lemma that is similar with Lemma 6.2 in form.

Lemma 7.5. Let T be a PBE task and d be a DNF formula satisfying all examples in T , then:
• All clauses in d must be false on all negative examples in T , i.e., ∀c ∈ d, IN (T) ⊆ N (I(T), c).
• There exists a clause in d that is true on at least |d |−1 portion of positive examples in T , i.e.,
∃c ∈ d, |P (I(T), c) | ≥ |d |−1 |IP (T) |.

By this lemma, C can be implemented similarly as Tpoly by regarding CCL as the domain solver,

as shown in Algorithm 4. Comparing with the counterpart in Tpoly, there are two main differences:

• GetPossibleClause() finds a set of clauses that are evaluated to false on all negative

examples, and are evaluated to true on at least k−1 portion of positive examples (Line 4).

Correspondingly, only covered positive examples are excluded in each recursion (Line 6).

• For the efficiency of CCL, C iteratively selects a parameter s ′ (Line 13). In each iteration, only

those literals with size at most s ′ are available (Line 15).

Our implementation of GetPossibleClause() (abbreviated as Get()) optimizes the sampling

algorithm in Tpoly by opening the box of clause solver CCL. By Algorithm 3, CCL synthesizes clauses

in two steps. It firstly finds a set cu of all usable literals and then simplifies it greedily. To synthesize

a usable clause, set cu should satisfy all negative examples and at least k−1 portion of positive

examples. We find the number of different cu satisfying this condition is usually small in practice.

Therefore, Get() tries to find all possible cu , and simplifies them using function SimplifyClause().
Given an input space I and a set of literals L, define relation ∼I on clause space CL(L) as

c1 ∼I c2 ⇐⇒ ∀I ∈ I, ⟦pc (c1)⟧(I) = ⟦pc (c2)⟧(I), i.e., ∼I represents the relation of semantically

equivalence on input space I. Under relation ∼I, CL(L) is divided into equivalent classes. We denote

the class corresponding to clause c as [c]I. It is easy to show that each class [c]I contains a globally
largest clause that is the union of all its elements, i.e., ∃c ′ ∈ [c]I, c

′ = (∪x x for x ∈ [c]I). Then, we
introduce the concept of representative clauses to denote the set of all possible cu generated by CCL.

Definition 7.6 (Representative Clauses). Given an input space I, a size limit k , and a set of literals

L, representative set R (I,k,L) ⊆ CL(L) includes all clause c satisfying: (1) c is the largest clause in
[c]I, (2) c takes true on at least k−1 portion of the inputs, i.e., |P (I, c) | ≥ k−1 |I|.

According to this definition, R (IP (T),k,L) is the set of possible cu when the PBE task isT , the size
limit is k and the set of available literals is L. Our implementation of Get() is shown as Algorithm

5. Get()maintains set result which is equal to R (IP (T),k,L
′) for some hidden literal set L′. Initially,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

167:18 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

Algorithm 4: DNF solver C for disjunctive normal forms

Input: A condition space Pc , a PBE task T and a constant c0.
Output: A DNF formula in DNF(Pc) satisfying all examples.

1 Function Search(literals,T ,k, s):
2 if |IP (T) | = 0 then return {};
3 if (literals,T ,k) is visited before or k = 0 then return ⊤;
4 for each c ∈ GetPossibleClause(literals,T ,k) do
5 if size(pc (c)) > c0s ln |T | then continue;
6 searchResult← Search(literals,T −

{
(I , true) ∈ T | ⟦pc (c)⟧(I) = true

}
,k − 1, s);

7 if searchResult , ⊥ then return {c} ∪ searchResult;
8 end
9 return ⊤;

10 s ← 1;

11 while True do
12 kl ← c0s;

13 for each (k, s ′) ∈ [1,kl] × [1, s] do
14 if (k, s ′) has not been visited before then
15 Pc ← GetConditionsWithSizeBound(Pc , s

′);

16 d ← Search(L(Pc),T ,k, s);
17 if d , ⊥ then return pd (d);

18 end
19 end
20 s ← s + 1;

21 end

Algorithm 5: Implementation of GetPossibleClause() in C.

Input: A set of literals literals, a PBE task T , and an upper bound k .
Output: A set of possible clauses according to Lemma 7.5.

1 result← {∅};
2 for each l ∈ literals do
3 for each c ∈ result do
4 if |P (IP (T), c ∪ {l }) | ≥ k−1 |IP (T) | then result.Insert(c ∪ {l });
5 end
6 for each c ∈ result do
7 if ∃c ′ ∈ result, (P (IP (T), c) = P (IP (T), c

′) ∧ c ⊂ c ′) then result.Delete(c);
8 end
9 end

10 return {SimplifyClause(c) | c ∈ result ∧ IN (T) ⊆ N (I(T), c)}

L′ is empty and thus result includes only an empty clause, i.e., true (Line 1). Get() considers all
literals in order (Lines 2-9). In each turn, a new literal is inserted to L′ and thus result is updated
correspondingly (Lines 3-8). At last, result is equal to R (IP (T),k, literals), and thus Get() simplies

and returns all valid clauses in result (Line 10).
We prove that C is an Occam solver, as shown in Lemma 7.7. Combining with Lemma 7.2, Upoly

is also an Occam unifier, as shown in Theorem 7.8.

Lemma 7.7. For any 0 < β < 1, C is a (2, β)-Occam solver on DNF(FC).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

Generalizable Synthesis through Unification 167:19

Theorem 7.8. For any 0 < β < 1, Upoly is a (8, β)-Occam unifier on FC .

Finally, we prove that PolyGen is an Occam solver by combining Theorem 7.8, Theorem 6.3 and

Theorem 5.7, as shown in Theorem 7.9.

Theorem 7.9. St is an (α , β)-Occam solver onT (FC) with β < 1

8
=⇒ PolyGen is an (8(α ′+1), 8β ′)-

Occam solver on FC for any α ′ > α , β < β ′ < 1

8
.

Note that the bound in Theorem 7.9 is loose in practice, as it considers all corner cases for the

sake of preciseness. For example, while analyzing solver C, we consider the case where both the

number of clauses and the size of the clauses are linear to the size of the target condition d∗. At
this time, there must be O (1) clauses of which the size is Ω(size(d∗)), and Ω(size(d∗)) clauses of
which the size is O (1). Such an if-condition is seldom used in practice.

8 IMPLEMENTATION
We instantiate our approach PolyGen on the domains of conditional linear integer arithmetic (CLIA).
Our implementation is in C++, and is available online [Ji et al. 2021].

Our implementation supports the family of CLIA domains FI defined in the evaluation of the

study on Eusolver [Alur et al. 2017], where different domains only differ in the number of inputs.

Concretely, given the number of inputs n, a domain DI = ((Pt ,Pc), I) ∈ FI is defined as follows.

• Term space Pt contains all linear integer expressions of input variables x1, . . . ,xn .
• Condition space Pc contains all arithmetic comparisons between linear expressions and their

boolean expressions, i.e., Pc is the smallest set satisfying the following equation.

Pc =
{
e1 o e2 | e1, e2 ∈ Pt , o ∈ {<, ≤,=}

}
∪
{
c1 o c2 | c1, c2 ∈ Pc , o ∈ {and, or}

}
∪
{
not c | c ∈ Pc

}

By Definition 5.4, DI is an if-closed conditional domain.

• Input space I contains integer assignments to input variables. For simplicity, we assume I
contains all assignments in a bounded range: I B {(w1, . . . ,wn) | wi ∈ [int_min, int_max]}.

To implement Tpoly and Upoly, we set parameters c and c0 as 2 by default.

At last, by Theorem 7.9, an Occam solver St onT (FI) is required to instantiate PolyGen on FI . We

implement St as an optimized solver that always synthesizes the smallest valid program. Concretely,

given PBE taskT , St synthesizes c0+c1x1+ · · ·+cnxn by solving the following optimization problem

with respect to c0, . . . , cn :

Minimize size(c0 + c1x1 + · · · + cnxn) Subject to ∀((w1, . . . ,wn),O) ∈ T ,
∑n

i=1wici + c0 = O

This problem is an instance of integer linear programming (ILP), and St solves it by invoking

Gurobi [Gurobi Optimization 2021], a state-of-the-art solver for ILP. Clearly, St is an (1, 0)-Occam
solver, and thus by Theorem 7.9, PolyGen is an Occam solver on FI .

9 EVALUATION
To evaluate PolyGen, we report several experiments to answer the following research questions:

• RQ1: How does PolyGen compare against existing PBE solvers?

• RQ2: How do term solver Tpoly and unifier Upoly affect the performance of PolyGen?
• RQ3: How do the values of parameter c and c0 affect the performance of PolyGen?

9.1 Experimental Setup
Baseline Solvers. We compare PolyGen with three existing PBE solvers, Esolver [Alur et al. 2013],
Eusolver [Alur et al. 2017], and Euphony [Lee et al. 2018], which represent the state-of-the-art of

three different methods on improving generalizability:

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

167:20 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

(1) The first method is guided by the principle of Occam’s Razor, which guarantees to synthesize

the smallest valid program. On CLIA, ESolver is the best existing solver following this method,

which enumerates programs in the increasing order of size, and prunes off useless programs

via a strategy namely observational equivalence.
(2) The second method combines the first method with efficient synthesis techniques heuristically,

and thus makes a trade-off between generalizability and efficiency. Among them, Eusolver
combines the principle of Occam’s Razor with the STUN framework by requiring the term

solver to enumerate terms in the increasing order of size.

(3) The third method uses a learned model to guide the synthesis. In this category, Euphony is

the state-of-the-art among solvers available on CLIA. Euphony is based on Eusolver and uses a

model based on structural probability to guide the search of Eusolver.

Besides, as the efficiency of Esolver is limited on CLIA, we also compare PolyGenwith an improved

solver Esolver+2, which adds a special treatment for if-then-else operators to ESolver and still

guarantees to synthesize the smallest valid program. When using the if-then-else operator to
construct larger programs, ESolver+ first selects an existing Boolean expression as the if-condition.
Then, for each existing program p, ESolver+ tries p as the if-term only when p is the smallest

program satisfying a subset of examples consistent with the corresponding if-branch. Concretely,
let Et (Ef) be the set of examples where the selected if-condition is evaluated to true (false),
p is considered only when there exists a subset E ′ ⊆ Et (Ef) such that p is the smallest program

satisfying all examples in E ′.
Oracle Models. Our evaluation follows the framework of OGIS [Jha and Seshia 2017]. We consider

two different models of oracles, which cover major usages of PBE solvers in practice.

(1) In model OV , the oracle can verify whether a program is correct, and can provide a counter-

example if the program is incorrect. To synthesize from these oracles, the framework of counter-
example guided inductive synthesis (CEGIS) [Solar-Lezama et al. 2006] is usually used.

Given an oracleO inOV and a PBE solver S, we run CEGIS with solver S to synthesize a program

from O. We measure the generalizability of S on O as the number of examples finally used by S

to synthesize a correct program, which is equal to the number of CEGIS turns, and we measure

the efficiency of S as the total time cost of the CEGIS framework.

(2) In model OR , the oracle cannot verify the correctness of a program but can provide a set of

input-output examples. At this time, a program is usually synthesized by (1) invoking the oracle

to generate as many examples as possible under some limits on resource, and then (2) invoking

a PBE solver to synthesize a program from these examples.

To evaluate the performance of a PBE solver S on an oracle O in OR , we assume that there is a

corresponding oracle O′ in OR that could verify whether the synthesized program is completely

correct for O. We run S in a similar way as CEGIS: starting from an empty set of examples, in

each turn, we run S on all existing examples. If the synthesis result is verified to be incorrect by

O′, we request a new example fromO and then start a new turn. We measure the generalizability

of S on O as the total number of used examples. Because the PBE solver is usually invoked only

once in practice, we measure the efficiency of S as the time cost of the last invocation.

Benchmark. Our evaluation is conducted on a datasetD of 100 benchmarks. For each benchmark,

two different oracles OV and OR are provided, which correspond to models OV and OR respectively.

The programs are synthesized in a domain of CLIA as stated in Section 8. D consists of two parts,

DS and DD , each obtained from an existing dataset.

2
We thank an anonymous reviewer for proposing this baseline solver.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

Generalizable Synthesis through Unification 167:21

Dataset DS . The first dataset DS consists of 82 benchmarks collected from the general track
3
in

SyGuS-Comp [Alur et al. 2019], where each benchmark is provided with a logic specification Φ.
To implement two oracles, we apply the algorithm A used in Eusolver [Alur et al. 2017], which

could (1) get the correct output for a given input, (2) get a counter-example for an incorrect result:

• Oracle OV . Given a candidate program p, OV firstly verifies the correctness of p via an SMT

solver and invokes A to generate a counter-example if p is incorrect.

• Oracle OR . OR randomly selects an input and invokes A to complete it into an example.

A is applicable only for special specifications, namely point-wise: specification Φ is point-wise if

it only relates an input point to its output. Therefore, we filter out those benchmarks where the

specification is not point-wise, and those benchmarks that cannot be solved by a CLIA program.

DatasetDD . The second datasetDD consists of 18 tasks for synthesizing a combinator in a divide-

and-conquer algorithm, which are collected by Farzan and Nicolet [2017]. The synthesized program

can be converted to a divide-and-conquer algorithm using ParSynt [Farzan and Nicolet 2017].

For example, the following specifies a task for synthesizing a combintor c in the divde-and-

conquer algorithm for the maximum segment sum (mss) problem.

∀l1, l2 : List, c
(
mss(l1),mss(l2),mps(l1),mps(l2),mts(l1),mts(l2)

)
= mss(l1 ++ l2) (1)

where l1 ++ l2 represents the list concatenation of lists l1, l2, mps represents the maximum prefix

sum of a list and mts represents the maximum suffix sum of a list. In this case, a valid combinator

can be obtained from equation mss(l1 ++ l2) = max(mss(l1),mss(l2),mts(l1) +mps(l2)).
We choose this dataset because of the following reasons.

(1) It is a typical application scenario for the oracle model OR . On the one hand, it is difficult

to verify the correctness of a program, as the specification involves complex list operations

that are difficult to model in SMT-Lib. On the other hand, it is easy to collect input-output

examples for the combinator, as all inputs and the output are generated by some executable

function, as shown in Equation 1.

(2) if-then-else operators are frequently used in the combinator, as there are usually many

possible cases when merging two halves. For example, the combinator for mss deals with 3

cases, corresponds to if-terms mss(l1),mss(l2) and mts(l1) +mps(l2) respectively.
(3) Synthesizing the combinator directly is difficult, as it can be rather complex in practice.

ParSynt can successfully synthesize the combinator only when a program sketch is provided.

Though it is difficult to verify the correctness of the synthesized program against the specification

involving complex list operations, it is not difficult to verify the equivalence of two CLIA programs.

The original dataset provides the ground truth program c∗ for each task, and thus we can still

implement the two oracles.

• Given a candidate program p, OV uses an SMT solver to verify whether p and c∗ are semanti-

cally equivalent on the input space.

• OR randomly selects an input and runs c∗ to get the corresponding output.

Configurations. All of the following experiments are conducted on Intel Core i7-8700 3.2GHz

6-Core Processor with 48GB of RAM. We use Z3 [de Moura and Bjørner 2008] as the underlying

SMT solver for oracles in model OV , and generate random inputs for oracles in model OR by setting

each input variable to a random integer according to a uniform distribution over [−50, 50].

3
There is also a CLIA track in SyGuS-Comp. We use the dataset of the general track here because (1) all benchmarks in the

CLIA track are included in the general track, (2) the general track includes additional benchmarks that are collected from a

varies of domains and can also be solved by programs in the CLIA syntax.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

167:22 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

Table 2. The results of comparing PolyGen with baselines.

Model OV OR
Solver #Solved #Example Time Cost #Solved #Example #Example≥ Time Cost

PolyGen 97 ×1.000 ×1.000 93 ×1.000 ×1.000

Esolver 9 ×0.969 ×3.668 9 ×1.065 ×52.271

Esolver+ 26 ×0.912 ×8.233 15 ×0.709 ×43.261

Eusolver 65 ×2.332 ×6.140 65 ×1.639 ×3.320 ×12.825

Euphony 51 ×2.271 ×7.417 53 ×1.115 ×3.302 ×15.067

For each execution, we set the time limit as 120 seconds, the memory limit as 8 GB, and the

example number limit as 10
4
. Besides, as both PolyGen and oracles in model OR have randomness,

we repeat all related executions 5 times and consider the average performance only.

9.2 Exp1: Comparison of Approaches (RQ1)
Procedure. For each oracle model, we compare PolyGen with ESolver, Eusolver and Euphony on

all benchmarks in D. Among them, the experiment setting for Euphony is slightly different from

others, as Euphony requires a labeled training set. We run Euphony in two steps:

• First, for those benchmarks in D where the target program is not explicitly provided, we

label them using the program synthesized by PolyGen.
• Second, we run Euphony using 3-fold cross-validation. We divide the dataset D into three

subsets. On each subset, we run Euphony with the model learned from the other two subsets.

One delicate point is thatD contains benchmarks that are almost the same except the number

of input variables. We put these benchmarks in the same subset and thus avoid data leaks.

Results. The results are summarized in Table 2 while more details are drawn as Figure 2. To

compare the generalizability, in each comparison, for each benchmark solved by both PolyGen and

the baseline solver, we record the ratio of the number of examples used by the baseline solver to

the number of examples used by PolyGen. The geometric mean of these ratios is listed in column

#Example. Similarly, to compare the efficiency, in each comparison, we record the ratio of the time

cost of the baseline solver to the time cost of PolyGen for those benchmarks solved by both solvers

and list the geometric mean of these ratios in column Time Cost.
Comparing with Esolver and Esolver+, the generalizability of PolyGen is close to both solvers

on both oracle models. Recall that the theory of Occam learning used by PolyGen is only an

approximation of the principle used by Esolver and Esolver+: Occam learning relaxes the requirement

from finding the smallest valid program to finding a valid program with a bounded size. The

experimental result shows that such an approximation does not affect the generalizability too

much in practice. Meanwhile, benefiting from the relaxed requirement on the size provided by

Occam Learning, PolyGen performs significantly better on efficiency: PolyGen solves much more

benchmarks comparing with Esolver and Esolver+, with significant speed-ups on those commonly

solved benchmarks. At last, the results show a tendency that the gap in the generalizability between

PolyGen and Esolver (Esolver+) grows on those difficult benchmarks. This result matches our

theoretical results. The generalization bound of PolyGen is polynomial to the size of the simplest

program while that of Esolver and Esolver+ is linear.
We also compare the sizes of the programs synthesized by PolyGen with the smallest valid

programs found by Esolver+. On those benchmarks solved by both solvers, the size of the program

synthesized by PolyGen is 14.2% larger than the smallest valid program on average, and is exactly

equal to the smallest on 20 out of 26 benchmarks. Among others, there is a single benchmark where

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

Generalizable Synthesis through Unification 167:23

(a) Results of Exp1 for OV of example (b) Results of Exp1 for OV of time (c) Results of Exp1 for OR of example

(d) Results of Exp1 for OR of time (e) Results of Exp2 for OV of example (f) Results of Exp2 for OV of time

(g) Results of Exp2 for OR of example (h) Results of Exp2 for OR of time

Fig. 2. The results of exp1 and exp2. For those figures on the time cost (Figures 2(b), 2(d), 2(f) and 2(h)), point
(t ,n) means that, if all benchmarks are started in parallel, n of them will be solved by the corresponding
benchmark after t seconds. For those figures on the number of required examples (Figures 2(a), 2(c), 2(e) and
2(g)), point (e,n) means that, if examples are provided to the corresponding approach one by one, n of the
benchmarks will be solved after e examples are provided.

PolyGen synthesizes a program at least twice larger than the smallest. On this benchmark, the

smallest program uses 2 relatively complex if-terms, while PolyGen synthesizes a larger program

with 4 simpler if-terms. PolyGen makes such a decision because term solver TE limits the size of

each if-term to ensure that the total size of if-terms is bounded (Line 6 in Algorithm 1).

Comparing with Eusolver and Euphony, PolyGen performs significantly better on both gener-

alizability and efficiency. The experimental result on the generalizability is consistent with our

theoretical analysis, as PolyGen is an Occam solver but Eusolver, Euphony are not. Comparing

with OV , the advantage of PolyGen on oracle model OR seems less attractive. The reason is that

on OR , the cost of distinguishing an incorrect program increases, and thus the effect of synthesis

algorithms is weakened. For example, in benchmark qm_neg_1.sl, it is hard to distinguish between

the target program is p∗ (x) = (if (x < 0) then 1 else 0) and a wrong program with a slightly

different if-condition p ′(x) = (if (x ≤ 0) then 1 else 0) in model OR . The probability for a

random input to distinguish them is smaller than 1% when the input is in the range [−50, 50].
Please note that the comparison in Column #Example suffers from a survivorship bias. On many

benchmarks that PolyGen solves while Eusolver (Euphony) does not, PolyGen is likely to have better

generalizability. To validate this point, we perform an extra experiment on modelOR . We iteratively

rerun Eusolver (Euphony) on those benchmarks where PolyGen solves but Eusolver (Euphony)
does not. Starting from only 1 random example, we invoke Eusolver (Euphony) with an enlarged

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

167:24 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

Table 3. The results of comparing PolyGen with weakened solvers.

Model OV OR
Solver #Solved #Example Time Cost #Solved #Example Time Cost

PolyGen 97 ×1.000 ×1.000 93 ×1.000 ×1.000

PolyGen−T 73 ×1.154 ×2.001 75 ×0.960 ×2.733

PolyGen−U 71 ×1.644 ×1.950 69 ×1.288 ×1.928

time-limit of 30 minutes. If the solver synthesizes an incorrect program, we record the current

number of examples as a lower bound of the generalizability, and then continue to the next iteration

by doubling the number of examples. The iteration stops when Eusolver (Euphony) successfully
synthesizes a correct program or times out. After adding these lower bounds, the geometric mean

of the ratios between the lower bounds and the number of examples used by PolyGen is reported

in column #Example≤ of Table 2. The result justifies the existence of the survivorship bias as the

ratios increase from ×1.115 − ×1.649 to ×3.320 − ×3.302. Please note that the new experiment still

favors Eusolver and Euphony because (1) the iteration only provides a coarse lower bound on the

number of required examples, (2) the survivorship bias still exists as Eusolver and Euphony still

time out on 27 and 28 out of 93 benchmarks, respectively.

In terms of efficiency, PolyGen solves almost all benchmarks in D on both oracle models. We

investigate those benchmarks where PolyGen times out, and conclude two major reasons:

• As the time cost of Tpoly grows quickly when the number of if-terms increases, PolyGen
may time out when a large term set is used. For example, PolyGen fails in finding a valid term

set for array_serach_15.sl where 16 different if-terms are used.

• As Upoly considers conditions in the increasing order of the size, PolyGen may time out

when a large condition is used. For example, PolyGen times out on mpg_example3.sl where

if-condition 2x + 2y − z − 7 ≤ 0 is used. This defect can be improved by combining PolyGen
with techniques on feature synthesis [Padhi and Millstein 2017].

To solve these hard benchmarks, another way is to further relax the requirement of Occam learning

and thus make it possible to design more efficient synthesizers. Comparing with the previous

strategy that requires synthesizing the smallest correct program, the main advantage of Occam

learning is that it relaxes the constraints on the synthesizer and allows us to design a more efficient

synthesizer with a theoretical guarantee on generalizability. Therefore, in our vision, a hierarchical

theory on generalizability can be established, where the constraints of Occam learning may be

further relaxed to enable more efficient synthesizers, and there may be different guarantees on

generalizability according to the level and the direction of the relaxation. It will be one direction of

future work.

At last, a noteworthy result is that Euphony performs even worse than Eusolver in our evaluation,

implying that the model used in Euphony plays a negative role. One possible reason is that the

target programs in our dataset are diverse and are difficult to be predicted by a simple probabilistic

model considering only the dependency between program elements.

9.3 Exp2: Comparison of the Term Solver and the Unifier (RQ2)
Procedure. In this experiment, we test how Tpoly and Upoly affect the performance of PolyGen.

Here, we implement two weakened solvers PolyGen−T and PolyGen−U : PolyGen−T replaces term

solver Tpoly with the term solver TE used in Eusolver, and PolyGen−U replaces unifier Upoly with the

unifier UE used in Eusolver. For each oracle model, we run these solvers on all benchmarks in D.

Results. The results are summarized in Table 3 while more details are drawn as Figure 2.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

Generalizable Synthesis through Unification 167:25

Table 4. The results of comparing PolyGen with different values of c and c0.

Model OV OR
Solver #Solved #Example Time Cost #Solved #Example Time Cost

PolyGen 97 ×1.000 ×1.000 93 ×1.000 ×1.000

PolyGen
1

94 ×1.075 ×1.073 87 ×1.013 ×0.867

PolyGen
3

94 ×0.994 ×0.940 90 ×0.934 ×0.752

As shown in Table 3, the unifier Upoly improves a lot on both efficiency and generalizability.

In contrast, Tpoly majorly contributes to the efficiency, as the generalizability of PolyGen changes

little when Tpoly is replaced. The reason is that the number of examples required by the unifier

usually dominates the number of examples required by the term solver because an example for

synthesizing if-conditions, where the output type is Boolean, provides much less information than

an example for synthesizing if-terms, where the output is an integer.

Besides the generalizability, one important advantage of Tpoly comparing with TE is that Tpoly can

quickly find some complex if-terms. For example, on benchmark mpg_example4.sl, Tpoly is able to

find a complex term set {10x+20y+15z−99, 9y+25w−11, 11x+15y+30z+22w+11, 16x+18z+5w−55}.
In contrast, TE cannot handle such a scale as it enumerates terms from small to large.

9.4 Exp3: Comparison of Values of c and c0 (RQ3)
Procedure. In this experiment, we test how the values of c and c0 affect the performance of PolyGen.
Here, we compare the default implementation of PolyGen, where both c and c0 are set to 2, with
two modified versions, PolyGen

1
and PolyGen

3
, where c and c0 are both set to 1 and 3 respectively.

Results. The results are summarized in Table 4. These results demonstrate that the generalizability

and efficiency of PolyGen are not sensitive to the values of c and c0. Note that though PolyGen
1

and PolyGen
3
perform faster on those jointly solved benchmarks than PolyGen, they solve fewer

benchmarks in contrast.

10 CONCLUSION
In this paper, we adopt a concept from computational learning theory, Occam Learning, to study

the generalizability of the STUN framework. On the theoretical side, we provide a sufficient set of

conditions for individual components in STUN to form an Occam solver and prove that Eusolver, a
state-of-the-art STUN solver, is not an Occam solver. Besides, we design an Occam solver PolyGen
for the STUN framework. On the practical side, we instantiate PolyGen on the domains of CLIA and

evaluate it against state-of-the-art PBE solvers on 100 benchmarks and 2 common oracle models.

The evaluation shows that (1) PolyGen significantly outperforms existing STUN solvers on both

efficiency and generalizability, and (2) PolyGen keeps almost the same generalizability with those

solvers that always synthesize the smallest program, but achieves significantly better efficiency.

ACKNOWLEDGEMENT
We sincerely thank the anonymous OOPSLA reviewers for their valuable feedback on this work.

This work is supported in part by National Key Research and Development Program of China No.

2019YFE0198100 and National Natural Science Foundation of China under Grant No. 61922003.

REFERENCES
David J. Aldous and Umesh V. Vazirani. 1995. A Markovian Extension of Valiant’s Learning Model. Inf. Comput. 117, 2

(1995), 181–186. https://doi.org/10.1006/inco.1995.1037

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

https://doi.org/10.1006/inco.1995.1037

167:26 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh,

Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Formal Methods in
Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013. 1–8. http://ieeexplore.ieee.org/document/

6679385/

Rajeev Alur, Pavol Cerný, and Arjun Radhakrishna. 2015. Synthesis Through Unification. In Computer Aided Verification -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II. 163–179. https:

//doi.org/10.1007/978-3-319-21668-3_10

Rajeev Alur, Dana Fisman, Saswat Padhi, Rishabh Singh, and Abhishek Udupa. 2019. SyGuS-Comp 2018: Results and

Analysis. CoRR abs/1904.07146 (2019). arXiv:1904.07146 http://arxiv.org/abs/1904.07146

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling Enumerative Program Synthesis via Divide and

Conquer. In Tools and Algorithms for the Construction and Analysis of Systems - 23rd International Conference, TACAS
2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings, Part I. 319–336. https://doi.org/10.1007/978-3-662-54577-5_18

Dana Angluin and Philip D. Laird. 1987. Learning From Noisy Examples. Mach. Learn. 2, 4 (1987), 343–370. https:

//doi.org/10.1007/BF00116829

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning

to Write Programs. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. https://openreview.net/forum?id=ByldLrqlx

Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017. Syntia: Synthesizing the Semantics of

Obfuscated Code. In 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017.
643–659. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. 1987. Occam’s Razor. Inf. Process. Lett. 24,
6 (1987), 377–380. https://doi.org/10.1016/0020-0190(87)90114-1

Yanju Chen, Ruben Martins, and Yu Feng. 2019. Maximal multi-layer specification synthesis. In Proceedings of the ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019. 602–612. https://doi.org/10.1145/3338906.3338951

Vasek Chvátal. 1979. A Greedy Heuristic for the Set-Covering Problem. Math. Oper. Res. 4, 3 (1979), 233–235. https:

//doi.org/10.1287/moor.4.3.233

WilliamW. Cohen. 1995a. Pac-Learning Recursive Logic Programs: Efficient Algorithms. J. Artif. Intell. Res. 2 (1995), 501–539.
https://doi.org/10.1613/jair.97

William W. Cohen. 1995b. Pac-learning Recursive Logic Programs: Negative Results. J. Artif. Intell. Res. 2 (1995), 541–573.
https://doi.org/10.1613/jair.1917

Robin David, Luigi Coniglio, and Mariano Ceccato. 2020. QSynth-A Program Synthesis based Approach for Binary Code

Deobfuscation. In BAR 2020 Workshop.
Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the

Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings.
337–340. https://doi.org/10.1007/978-3-540-78800-3_24

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet Kohli. 2017.

RobustFill: Neural Program Learning under Noisy I/O. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. 990–998. http://proceedings.mlr.press/v70/devlin17a.html

Samuel Drews, Aws Albarghouthi, and Loris D’Antoni. 2019. Efficient Synthesis with Probabilistic Constraints. In Computer
Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I.
278–296. https://doi.org/10.1007/978-3-030-25540-4_15

Saso Dzeroski, Stephen Muggleton, and Stuart J. Russell. 1992. PAC-Learnability of Determinate Logic Programs. In

Proceedings of the Fifth Annual ACM Conference on Computational Learning Theory, COLT 1992, Pittsburgh, PA, USA, July
27-29, 1992. 128–135. https://doi.org/10.1145/130385.130399

Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 2001. Dynamically Discovering Likely Program

Invariants to Support Program Evolution. IEEE Trans. Software Eng. 27, 2 (2001), 99–123. https://doi.org/10.1109/32.908957
Azadeh Farzan and Victor Nicolet. 2017. Synthesis of divide and conquer parallelism for loops. In Proceedings of the 38th

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23,
2017. 540–555. https://doi.org/10.1145/3062341.3062355

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. In Proceedings of the 38th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,
2011. 317–330. https://doi.org/10.1145/1926385.1926423

LLC Gurobi Optimization. 2021. Gurobi Optimizer Reference Manual. http://www.gurobi.com

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

http://ieeexplore.ieee.org/document/6679385/
http://ieeexplore.ieee.org/document/6679385/
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1007/978-3-319-21668-3_10
https://arxiv.org/abs/1904.07146
http://arxiv.org/abs/1904.07146
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/BF00116829
https://doi.org/10.1007/BF00116829
https://openreview.net/forum?id=ByldLrqlx
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko
https://doi.org/10.1016/0020-0190(87)90114-1
https://doi.org/10.1145/3338906.3338951
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1613/jair.97
https://doi.org/10.1613/jair.1917
https://doi.org/10.1007/978-3-540-78800-3_24
http://proceedings.mlr.press/v70/devlin17a.html
https://doi.org/10.1007/978-3-030-25540-4_15
https://doi.org/10.1145/130385.130399
https://doi.org/10.1109/32.908957
https://doi.org/10.1145/3062341.3062355
https://doi.org/10.1145/1926385.1926423
http://www.gurobi.com

Generalizable Synthesis through Unification 167:27

Thomas R. Hancock, Tao Jiang, Ming Li, and John Tromp. 1995. Lower Bounds on Learning Decision Lists and Trees

(Extended Abstract). In STACS 95, 12th Annual Symposium on Theoretical Aspects of Computer Science, Munich, Germany,
March 2-4, 1995, Proceedings. 527–538. https://doi.org/10.1007/3-540-59042-0_102

Qinheping Hu, John Cyphert, Loris D’Antoni, and Thomas W. Reps. 2020. Exact and approximate methods for proving

unrealizability of syntax-guided synthesis problems. In Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020. 1128–1142. https:

//doi.org/10.1145/3385412.3385979

Kangjing Huang, Xiaokang Qiu, Peiyuan Shen, and Yanjun Wang. 2020. Reconciling enumerative and deductive program

synthesis. In Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2020, London, UK, June 15-20, 2020. 1159–1174. https://doi.org/10.1145/3385412.3386027

Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. 2010. Oracle-guided component-based program synthesis.

In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1. ACM, 215–224.

Susmit Jha and Sanjit A. Seshia. 2017. A theory of formal synthesis via inductive learning. Acta Informatica 54, 7 (2017),
693–726. https://doi.org/10.1007/s00236-017-0294-5

Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and Zhenjiang Hu. 2020a. Question selection for interactive program

synthesis. In Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 1143–1158.

https://doi.org/10.1145/3385412.3386025

Ruyi Ji, Yican Sun, Yingfei Xiong, and Zhenjiang Hu. 2020b. Guiding dynamic programing via structural probability for

accelerating programming by example. Proc. ACM Program. Lang. 4, OOPSLA (2020), 224:1–224:29. https://doi.org/10.

1145/3428292

Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu. 2021. Artifact for OOPSLA’21: Generalizable Synthesis Through
Unification. https://doi.org/10.5281/zenodo.5499720

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit Gulwani. 2018. Neural-

Guided Deductive Search for Real-Time Program Synthesis from Examples. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. https://openreview.
net/forum?id=rywDjg-RW

Michael J. Kearns and Ming Li. 1988. Learning in the Presence of Malicious Errors (Extended Abstract). In Proceedings
of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA. 267–280. https:

//doi.org/10.1145/62212.62238

Michael J. Kearns and Robert E. Schapire. 1994. Efficient Distribution-Free Learning of Probabilistic Concepts. J. Comput.
Syst. Sci. 48, 3 (1994), 464–497. https://doi.org/10.1016/S0022-0000(05)80062-5

Jinwoo Kim, Qinheping Hu, Loris D’Antoni, and Thomas W. Reps. 2021. Semantics-guided synthesis. Proc. ACM Program.
Lang. 5, POPL (2021), 1–32. https://doi.org/10.1145/3434311

Tessa A. Lau, Steven A. Wolfman, Pedro M. Domingos, and Daniel S. Weld. 2003. Programming by Demonstration Using

Version Space Algebra. Mach. Learn. 53, 1-2 (2003), 111–156. https://doi.org/10.1023/A:1025671410623

Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser. 2017. S3: syntax- and semantic-guided

repair synthesis via programming by examples. In ESEC/FSE. 593–604. https://doi.org/10.1145/3106237.3106309

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accelerating search-based program synthesis using

learned probabilistic models. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018. 436–449. https://doi.org/10.1145/3192366.3192410

Percy Liang, Michael I. Jordan, and Dan Klein. 2010. Learning Programs: A Hierarchical Bayesian Approach. In Proceedings
of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel. 639–646. https:

//icml.cc/Conferences/2010/papers/568.pdf

Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr Polozov, Rishabh Singh, Benjamin G. Zorn,

and Sumit Gulwani. 2015. User Interaction Models for Disambiguation in Programming by Example. In Proceedings of the
28th Annual ACM Symposium on User Interface Software & Technology, UIST 2015, Charlotte, NC, USA, November 8-11, 2015,
Celine Latulipe, Bjoern Hartmann, and Tovi Grossman (Eds.). ACM, 291–301. https://doi.org/10.1145/2807442.2807459

Sergey Mechtaev, Alberto Griggio, Alessandro Cimatti, and Abhik Roychoudhury. 2018. Symbolic execution with existential

second-order constraints. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ACM, 389–399.

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015a. DirectFix: Looking for Simple Program Repairs. In ICSE.
448–458. https://doi.org/10.1109/ICSE.2015.63

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015b. DirectFix: Looking for Simple Program Repairs. In 37th
IEEE/ACM International Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1. 448–458.
https://doi.org/10.1109/ICSE.2015.63

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

https://doi.org/10.1007/3-540-59042-0_102
https://doi.org/10.1145/3385412.3385979
https://doi.org/10.1145/3385412.3385979
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.1145/3385412.3386025
https://doi.org/10.1145/3428292
https://doi.org/10.1145/3428292
https://doi.org/10.5281/zenodo.5499720
https://openreview.net/forum?id=rywDjg-RW
https://openreview.net/forum?id=rywDjg-RW
https://doi.org/10.1145/62212.62238
https://doi.org/10.1145/62212.62238
https://doi.org/10.1016/S0022-0000(05)80062-5
https://doi.org/10.1145/3434311
https://doi.org/10.1023/A:1025671410623
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3192366.3192410
https://icml.cc/Conferences/2010/papers/568.pdf
https://icml.cc/Conferences/2010/papers/568.pdf
https://doi.org/10.1145/2807442.2807459
https://doi.org/10.1109/ICSE.2015.63
https://doi.org/10.1109/ICSE.2015.63

167:28 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani, Butler W. Lampson, and Adam Kalai. 2013. A Machine Learning

Framework for Programming by Example. In Proceedings of the 30th International Conference on Machine Learning, ICML
2013, Atlanta, GA, USA, 16-21 June 2013. 187–195. http://proceedings.mlr.press/v28/menon13.html

Kazutaka Morita, Akimasa Morihata, Kiminori Matsuzaki, Zhenjiang Hu, and Masato Takeichi. 2007. Automatic inversion

generates divide-and-conquer parallel programs. In Proceedings of the ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation, San Diego, California, USA, June 10-13, 2007. 146–155. https://doi.org/10.1145/

1250734.1250752

Dana Moshkovitz. 2011. The Projection Games Conjecture and The NP-Hardness of ln n-Approximating Set-Cover. Electron.
Colloquium Comput. Complex. 18 (2011), 112. http://eccc.hpi-web.de/report/2011/112

B. K. Natarajan. 1993. Occam’s Razor for Functions. In Proceedings of the Sixth Annual ACM Conference on Computational
Learning Theory, COLT 1993, Santa Cruz, CA, USA, July 26-28, 1993. 370–376. https://doi.org/10.1145/168304.168380

Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit Gulwani, and Todd D. Millstein. 2018. FlashProfile:

a framework for synthesizing data profiles. PACMPL 2, OOPSLA (2018), 150:1–150:28. https://doi.org/10.1145/3276520

Saswat Padhi and Todd D. Millstein. 2017. Data-Driven Loop Invariant Inference with Automatic Feature Synthesis. CoRR
abs/1707.02029 (2017). arXiv:1707.02029 http://arxiv.org/abs/1707.02029

J. Ross Quinlan. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (1986), 81–106. https://doi.org/10.1023/A:1022643204877
Veselin Raychev, Pavol Bielik, Martin T. Vechev, and Andreas Krause. 2016. Learning programs from noisy data. In Proceedings

of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20 - 22, 2016. 761–774. https://doi.org/10.1145/2837614.2837671

Mohammad Raza and Sumit Gulwani. 2018. Disjunctive Program Synthesis: A Robust Approach to Programming by Example.

In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, Sheila A. McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press,

1403–1412. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17055

Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Clark W. Barrett, and Cesare Tinelli. 2019. cvc4sy: Smart and Fast Term

Enumeration for Syntax-Guided Synthesis. In Computer Aided Verification - 31st International Conference, CAV 2019, New
York City, NY, USA, July 15-18, 2019, Proceedings, Part II. 74–83. https://doi.org/10.1007/978-3-030-25543-5_5

Ronald L. Rivest. 1987. Learning Decision Lists. Mach. Learn. 2, 3 (1987), 229–246. https://doi.org/10.1007/BF00058680

David E. Shaw, William R. Swartout, and C. Cordell Green. 1975. Inferring LISP Programs From Examples. In Advance
Papers of the Fourth International Joint Conference on Artificial Intelligence, Tbilisi, Georgia, USSR, September 3-8, 1975.
260–267. http://ijcai.org/Proceedings/75/Papers/037.pdf

Rishabh Singh and Sumit Gulwani. 2015. Predicting a Correct Program in Programming by Example. In Computer Aided
Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I. 398–414.
https://doi.org/10.1007/978-3-319-21690-4_23

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and Vijay A. Saraswat. 2006. Combinatorial

sketching for finite programs. In Proceedings of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006. 404–415. https://doi.org/10.1145/

1168857.1168907

Leslie G. Valiant. 1984. A Theory of the Learnable. Commun. ACM 27, 11 (1984), 1134–1142. https://doi.org/10.1145/1968.1972

Chenglong Wang, Alvin Cheung, and Rastislav Bodík. 2017. Interactive Query Synthesis from Input-Output Examples. In

Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA,
May 14-19, 2017, Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 1631–1634.

https://doi.org/10.1145/3035918.3058738

Juan Zhai, Jianjun Huang, Shiqing Ma, Xiangyu Zhang, Lin Tan, Jianhua Zhao, and Feng Qin. 2016. Automatic model

generation from documentation for Java API functions. In ICSE. 380–391.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

http://proceedings.mlr.press/v28/menon13.html
https://doi.org/10.1145/1250734.1250752
https://doi.org/10.1145/1250734.1250752
http://eccc.hpi-web.de/report/2011/112
https://doi.org/10.1145/168304.168380
https://doi.org/10.1145/3276520
https://arxiv.org/abs/1707.02029
http://arxiv.org/abs/1707.02029
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1145/2837614.2837671
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17055
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/BF00058680
http://ijcai.org/Proceedings/75/Papers/037.pdf
https://doi.org/10.1007/978-3-319-21690-4_23
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/3035918.3058738

Generalizable Synthesis through Unification 167:29

A APPENDIX: OCCAM LEARNING
In this section, we compare the difference between the original definition of Occam Learning

provided by Blumer et al. [1987] and the extended definition used in this paper (Definition 4.2).

Definition A.1 (Original Definition of Occam Learning). Let C,H be the concept classes containing

target concepts and hypotheses respectively. Then, for constants α ≥ 0 and 0 ≤ β < 1, a learning

algorithm L is an (α , β)-Occam algorithm for C using H iff, given a set S = {x1, . . . ,xm } of m
samples labeled according to a concept c ∈ C , L outputs a hypothesis h ∈ H such that:

• h is consistent with c on S , i.e., ∀x ∈ S,h(x) = c (x).
• size(h) ≤ (N · size(c))αmβ

.

where N is the maximum length of any sample x ∈ S , size(c) and size(h) are the lengths of the
binary representations of concept c and hypothesis h respectively.

Definition A.2 (Definition 4.2). For constants α ≥ 1, 0 ≤ β < 1, PBE solver S is an (α , β)-Occam
solver on a family of domains F if there exist constants c,γ > 0 such that for any program domain

D ∈ F, for any target program p∗ ∈ P, for any input set {I1, . . . , In } ⊆ I, for any error rate ϵ ∈
(
0, 1

2

)
:

Pr

[
size

(
S
(
T (p∗, I1, . . . , In)

))
> c (size(p∗))α nβ lnγ

(
1

ϵ

)]
≤ ϵ

where size(p) is the length of the binary representation of program p, T (p, I1, . . . , In) is defined as

the PBE task corresponding to target program p∗ and inputs I1, . . . , In .

To adopt the concept Occam Learning to our paper, we firstly replace terms in Definition A.1

with their counterparts in programming by example:

• The classes of concepts C and hypotheses H both correspond to the program space P.
• The learner L corresponds to a PBE solver S.

• The target concept c , samples S = {x1, . . . ,xm }, the set of labeled samples and the learned

hypothesis h correspond to the target program p∗, the set of inputs {I1, . . . , In }, the PBE task

T (p∗, I1, . . . , In) and the synthesized program S(T (p∗, I1, . . . , In)) respectively.

Second, for simplicity, we assume that the range of an input variable is finite and bounded, and

thus ignore the cost of expressing samples, i.e., variable N in Definition A.1. When the range of an

input variable is bounded, a sample can be expressed using O (k) bits, where k is the number of

input variables, and thus N can be bounded by O (size(p∗)). Therefore, at this time, removing N
from the upper bound would not affect the class of Occam algorithms (solvers), though the concrete

values of constants α and β may be changed.

Third, we extend Definition A.1 to support randomness by introducing error rate ϵ . In Definition

A.2, a random PBE solver S is allowed to return a program larger than the upper bound, but the

probability should be bounded. In Definition A.2, factor ln(1/ϵ) is introduced to let the size of

the returned program concentrate to the original polynomial bound, and thus we could prove a

theoretical guarantee on the generalizability of a random Occam solver that is similar with the

guarantee for deterministic Occam solvers.

Theorem A.3 (Theorem 4.6). Let S be an (α , β)-Occam solver on domain D. Then there exist
constants c,γ > 0 such that for any 0 < ϵ,δ < 1, for any distribution D over I and for any target
program p∗ ∈ P:

∀n > c *
,

1

ϵ
ln

(
2

δ

)
+

(
(size(p∗))α ln

γ (2/δ)

ϵ

)
1/(1−β)

+
-
, Pr
Ii∼D

[
errD,p∗

(
S
(
T (p∗, I1, . . . , In)

))
≥ ϵ

]
≤ δ

where errD,p∗ (p) represents the error rate of program p when the input distribution is D and the target
program is p∗, i.e., errD,p∗ (p) B PrI∼D [⟦p⟧(I) , ⟦p∗⟧(I)].

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

167:30 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

Proof. By Definition A.2, there exists constants c ′,γ ′ such that:

Pr

[
size

(
S
(
T (p∗, I1, . . . , In)

))
> c ′ (size(p∗))α nβ lnγ

′
(
2

δ

)]
≤

δ

2

(2)

Let Pδ be the set of programs satisfying that the size is no larger than c ′
(
size(p∗)αnβ lnγ (2/δ)

)
.

By Lemma 4.5, we have an upper bound on |Pδ |:

ln |Pδ | ≤ c ′(ln 2)
(
size(p∗)αnβ lnγ

′

(2/δ)
)

Let E be the event where S returns a program outside Pδ . Then by Equation 2, Pr[E] ≤ δ
2
. Besides,

let Pϵ,δ ⊆ Pδ be the set of program p in Pδ satisfying errD,p∗ (p) ≥ ϵ . Then:

Pr

Ii∼D

[
errD,p∗

(
S
(
T (p∗, I1, . . . , In)

))
≥ ϵ

]
≤ Pr

Ii∼D
[E] + Pr

Ii∼D

[
∀p ∈ Pϵ,δ ,

(
∃i ∈ [1,n], ⟦p⟧(Ii) , ⟦p

′⟧(Ii)
)]

≤
δ

2

+ |Pδ |(1 − ϵ)
n

Therefore, we obtain the following inequality on n:

Pr

Ii∼D

[
errD,p∗

(
S
(
T (p∗, I1, . . . , In)

))
≥ ϵ

]
≤ δ

⇐= |Pδ |(1 − ϵ)
n ≤

δ

2

⇐= n ln
(

1

1 − ϵ

)
≥ ln

(
2

δ

)
+ c ′(ln 2)

(
size(p∗)αnβ lnγ

′
(
2

δ

))
⇐= n ≥

1

ϵ
ln

(
2

δ

)
+
c ′(ln 2)

ϵ

(
size(p∗)αnβ lnγ

′
(
2

δ

))
⇐= n ≥ c *

,

1

ϵ
ln

(
2

δ

)
+

(
(size(p∗))α ln

γ (2/δ)

ϵ

)
1/(1−β)

+
-

where c is a large enough constant and γ = γ ′. □

B APPENDIX: PROOFS
In this section, we complete the proofs of the theorems in our paper.

Lemma B.1 (Lemma 4.5). For any domain D, ∀p ∈ P, ��
{
p ′ ∈ P | size(p ′) ≤ size(p)

}�� ≤ 2
size(p) .

Proof. Let n be the number of grammar rules used to derive program p, R be the set of available

grammar rules, and N be the size of R. Let r ∗ be an arbitrary rule in R.
Let Pp be the set of all program p ′ satisfying size(p ′) ≤ size(p). Define function φ : Pp 7→ Rn as

φ (p) B r1 . . . rn′r
∗ . . . r ∗, where r1 . . . rn′ is the leftmost derivation of program p’, and r ∗ repeats

for n − n′ times. Clearly, φ is an injection, i.e., ∀p1,p2 ∈ Pp ,p1 , p2 =⇒ φ (p1) , φ (p2).

Therefore, |Pp | ≤ |R
n | ≤ N n ≤ 2

size(p)
. □

Theorem B.2 (Theorem 4.7). Let FA be the family of all possible domains. Then Smin is an (1, 0)-
Occam solver on FA, and Srand is not an Occam solver on FA.

Proof. We start with Smin. Let p
∗
be the target program and p be the program synthesized by

Smin. By the definition of Smin, size(p) ≤ size(p∗). Therefore, Smin is an (1, 0)-Occam solver.

For Srand, suppose that all programs in the program space satisfy all given examples, and the

target program p∗ is the smallest program in the program space. Let p be the program synthesized

by Srand. Then, by the definition of Srand, p follows a uniform distribution on the program space.

Therefore, size(p) can be arbitrarily larger than size(p∗), and Srand is not an Occam solver. □

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

Generalizable Synthesis through Unification 167:31

Theorem B.3 (Theorem 5.7). LetT be an (α1, β1)-Occam term solver onFC ,U be an (α2, β2)-Occam
unifier where β1α2 + β2 < 1. Then the STUN solver comprised of T and U is an ((α1 + 1)α2, β1α2 + β2)-
Occam solver.

Proof. Let p∗ be the target program, and P = {t1, . . . , tn } be the term set synthesized by T. By

the definition of an Occam term solver, there exists constants c1 and γ1 such that:

∀ϵ1 ∈
(
0,
1

2

)
, Pr

[
tsize (P) > c1 (size(p

∗))α1 nβ1 lnγ1
(
1

ϵ1

)]
≤ ϵ1

We construct the following function φ : Pt 7→ (P ,Pc) that converts a term into the program

space of the unifier U:

φ (t) B if (t = t1) then t1 else . . . else if (t = tn−1) then tn−1 else tn

By the definition of size(p), size(φ (t)) ≤ 2n⌈log
2
N ⌉ + n · size(t) + 2tsize(P) ≤ c3size(t)tsize(P),

where N is the number of grammar rules, c3 is a large enough constant.

φ can be extend to the whole program space (Pt ,Pc) where φ (p) is the program replacing all

terms t used in p with φ (t). Clearly, size(φ (p)) is no larger than c3size(p)tsize(P).
Let pu be the program synthesized by U. As φ (p∗) is a valid program for the unifier U, by the

definition of an Occam unifier, there exists constants c2 and γ2 such that:

∀ϵ2 ∈
(
0,
1

2

)
, Pr

[
size (pu) > c2

(
max(size(φ (p∗)), tsize(P))

)α2

nβ2 lnγ2
(
1

ϵ2

)]
≤ ϵ2

For any ϵ ∈
(
0, 1

2

)
, by taking ϵ1 = ϵ2 =

1

2
ϵ , we obtain the following inequality:

Pr

[
tsize (P) > c1 (size(p

∗))α1 nβ1 lnγ1
(
2

ϵ

)]
≤

ϵ

2

∧
Pr

[
size (pu) > c2

(
max(size(φ (p∗)), tsize(P))

)α2

nβ2 lnγ2
(
2

ϵ

)]
≤

ϵ

2

=⇒ Pr

[
size (pu) > c2

(
c1c3 (size(p

∗))α1+1 nβ1 lnγ1
(
2

ϵ

))α2

nβ2 lnγ2
(
2

ϵ

)]
≤ ϵ

=⇒ Pr

[
size (pu) > c (size(p∗)) (α1+1)α2 nβ1α2+β2

ln
γ

(
1

ϵ

)]
≤ ϵ

where c is a large enough constant and γ = γ1α2 + γ2.
Therefore, the STUN solver comprised of T and U is an ((α1 + 1)α2, β1α2 + β2)-Occam solver. □

Theorem B.4 (Theorem 5.9). TE is not an Occam term solver on FA
C , and Eusolver is not an Occam

solver on FA
C , where F

A
C is the family of all if-closed conditional domains.

Proof. This theorem is directly from Example 5.8. □

Theorem B.5 (Theorem 5.10). There is no polynomial-time Occam unifier on FA
C unless NP = RP.

Proof. Suppose there is a polynomial-time Occam unifier U. Given a decision tree learning

problem with k different tests and n data d1, . . . ,dn labeled withm different labels. We construct a

conditional program domain D where:

• Input space I contains n different inputs, corresponding to data d1, . . . ,dn .
• Term space Pt containsm different constants 1, 2, . . . ,m, corresponding tom different labels.

• Condition space Pc contains k + 1 different conditions false, c1, . . . , ck , where c1, . . . , ck
correspond to k different tests. If the test result of the ith test on data dj is true, ⟦ci ⟧(dj)
will be defined as true. Otherwise, ⟦ci ⟧(dj) will be defined as false.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

167:32 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

Because ∀a,b ∈ Pt ,∀di ∈ I, ⟦false⟧(di) ⇐⇒ ⟦a⟧(di) = ⟦b⟧(di), D is an if-closed domain.

Let T = {(di , li)} be a PBE task where li is the index of the label corresponding to data di , and
let p be the program synthesized by U for PBE task T and term set {1, 2, . . . ,m}. We remove the

usages of condition false in p by replacing program (if (false) then p1 else p2) with its

else-branch p2. Suppose p
′
be the resulting program. Clearly, the size of p ′ is no larger than p and

p ′ can be mapped back into a decision tree.

So far, we construct a polynomial-time learning algorithm for decision trees based on U. By

Theorem 4.6, this construction implies that the class of decision trees is PAC learnable. Combining

with the fact that the class of decision trees is not PAC learnable unless NP = RP [Hancock et al.

1995], we know there is no polynomial-time Occam unifier unless NP = RP. □

Lemma B.6 (Lemma 6.1). For constants α1,α2 ≥ 0, 0 ≤ β1, β2 < 1 where β1 + β2 < 1, term solver
T is an (α1 + α2, β1 + β2)-Occam solver on FC if there exist constants c,γ > 0 such that for any
conditional domain D ∈ FC , any target program p∗ ∈ P, and any input set {I1, . . . , In } ⊆ I:
(1) With a high probability, the size of terms returned by T is bounded by size(p∗)α1nβ1 .

Pr

[
max

{
size(p) ��� p ∈ T

(
(I1, ⟦p⟧(I1)), . . . , (In , ⟦p⟧(In))

)}
> c (size(p∗))α1 nβ1 lnγ

(
1

ϵ

)]
≤ ϵ

(2) With a high probability, the number of terms returned by T is bounded by size(p∗)α2nβ2 .

Pr

[���T
(
(I1, ⟦p⟧(I1)), . . . , (In , ⟦p⟧(In))

) ��� > c (size(p∗))α2 nβ2 lnγ
(
1

ϵ

)]
≤ ϵ

Proof. Let P be the synthesized term set. For any ϵ ∈
(
0, 1

2

)
, with a probability of at least 1 − ϵ :

max

{
size(p)

��� p ∈ P
}
≤ c (size(p∗))α1 nβ1 lnγ

(
2

ϵ

) ∧
|P | ≤ c (size(p∗))α2 nβ2 lnγ

(
2

ϵ

)
Because tsize(P) ≤ |P | ·max

{
size(p) | p ∈ P

}
, with a probability of at least 1 − ϵ :

tsize(P) ≤
(
c (size(p∗))α1 nβ1 lnγ

(
2

ϵ

))
·

(
c (size(p∗))α2 nβ2 lnγ

(
2

ϵ

))
≤ c ′ (size(p∗))α1+α2 nβ1+β2 ln2γ

(
1

ϵ

)
where c ′ is a large enough constant. Therefore, T is a (α1 + α2, β1 + β2)-Occam solver. □

Lemma B.7 (Lemma 6.2). Let T be a PBE task, and let P be a set of terms that covers all examples in
T , i.e., ∀(I ,O) ∈ T ,∃p ∈ P , (⟦p⟧(I) = O). There is always a term p ∈ P such that:

���
{
(I ,O) ∈ T ��� ⟦p⟧(I) = O

}��� ≥ |T |/|P |

Proof. Let t1, . . . , tn be the terms in P , andw1, . . . ,wn be the number of examples covered by

term ti , i.e., wi B |{(I ,O) ∈ T | ⟦ti ⟧(I) = O }|. As P covers all examples in T ,
∑n

i=1wi must be at

least |T |. Therefore, we have maxwi ≥ |T |/|P |. □

Theorem B.8 (Theorem 6.3). St is an (α , β)-Occam solver on T (FC) =⇒ Tpoly is an (α ′ + 1, β ′)-
Occam term solver onFC for anyα ′ > α , β < β ′ < 1, whereT (FC) is defined as {(Pt , I′) | ((Pt ,Pc), I) ∈
FC , I

′ ⊆ I}.

Proof. Let s∗ be the value of variable s (Line 19 in Algorithm 1) when Tpoly terminates. Let p∗

be the target program, P∗ be the terms used by p∗, P be the term set synthesized by Tpoly, and n be

the number of examples, i.e., |T |. By Algorithm 1, the total size of P is bounded by s∗:

tsize(P) ≤ |P | ·max

p∈P
size(p) ≤ cs∗ lnn · c (s∗)αnβ ≤ c ′(s∗)α+1nβ

′′

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

Generalizable Synthesis through Unification 167:33

where β ′′ is a constant larger than β and c ′ is a large enough constant.

Let c1 be a large enough constant, α ′ be any constant larger than 1, β ′ be any constant larger

than 0. Suppose s ≥ c1size(p
∗)α

′

nβ
′

, nt = csα /(1−β) , kt = cs logn. We denote an invocation

Search(T ′,k,nt , s) valid if the following three random events happen:

• E1: There is at least one valid sampling round, where a sampling round is valid if t∗ covers
all sampled examples, and t∗ is the target term in P∗ that covers the most examples in T ′.

• E2: size(t0) ≤ csαn
β
t , where t0 is the term synthesized in the first valid sampling round.

• E3: size(t0) covers at least a half of those examples covered by t∗ in T ′, i.e.,(���Covered(t0,T ′) ∩ Covered(t∗,T ′)��� ≥
1

2

���Covered(t
∗,T ′)���

)
∧

(���Covered(t∗,T ′)��� > 0

)
Consider a recursion chain RC of function Search() with examples T ′

0
= T , . . . ,T ′nc = ∅, where

Ti recurses into Ti+1 by including t0 in the result, i.e., Ti+1 = Ti − Covered(p
∗,Ti).

• Claim:When all invocations in RC are valid, nc is at most 2|P∗ | ln |T | + 1.
• Proof: By the definition of t∗, |Covered(t∗,Ti)| ≥ |Ti |/|P

∗ |. Then by the definition of E3, we

have |Ti+1 | ≤ (1 − 1/(2|P∗ |)) |Ti |. Therefore, nc ≤ 2|P∗ | ln |T | + 1.

Because kt = cs logn > 2|P∗ | lnn, such a recursion chain is allowed. Therefore, we only need to

consider the probability for all invocations to be valid:

• E1. As t
∗
is the target term that covers the most examples, the probability for a random

example to be in Covered(t∗, T’) is at least 1/|P∗ |. Therefore, the probability for a sampling

round to be valid is |P∗ |−nt :

Pr[¬E1] ≤
(
1 − |P∗ |−nt

)ntknt ≤ exp(−nt) <
1

12size(p∗) lnn

The last two inequalities hold when constant c1 is large enough.
• E2. As St is an (α , β)-Occam solver, there exists constants c2,γ such that:

∀ϵ ∈
(
0,
1

2

)
, Pr

[
size(t0) > c2 (size(p

∗))αn
β
t ln

γ
(
1

ϵ

)]
< ϵ

Therefore, with a probability at least 1 − 1/(12size(p∗) lnn)), we have:

size(t0) ≤ c2 (size(p
∗))αn

β
t ln

γ (12size(p∗) lnn) < csαn
β
t

The last inequality holds when constant c1 is large enough.
• E3. Let I

′
be the input space that contains all inputs in Covered(t∗,T ′), and D be a uniform

distribution on I′. As St is an (α , β)-Occam solver, by Theorem 4.6, E3 happens with a

probability of at least 1 − 1/(12size(p∗) lnn) if the following inequality holds:

nt > c3
*..
,

1

2

ln

(
24size(p∗) lnn

)
+
*.
,

(size(p∗))α ln
γ

(
24size(p∗) lnn

)
ϵ

+/
-

1/(1−β)
+//
-

where c3 is a fixed constant. Clearly, when c1 is large enough, this inequality always holds.

Let ERCi be the random event that the ith invocation in RC is valid, and ERC be the random event

that all events in RC are valid. Then:

Pr

[
¬ERC

]
≤

nc∑
i=1

Pr

[
ERCi

]
≤ (2|P∗ | lnn + 1)

(
Pr[¬E1] + Pr[¬E2] + Pr[¬E3]

)
≤ (2size(p∗) lnn + 1) ·

1

4size(p∗) lnn
≤

3

4

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

167:34 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

Therefore, when s is larger than c1size(p
∗)α

′

nβ
′

, in each iteration, Tpoly returns with a probability

at least
1

4
. Therefore, for any ϵ ∈ (0, 1):

Pr

[
s∗ ≤ c1size(p

∗)α
′

nβ
′

+ c4 ln
(
1

ϵ

)]
< ϵ

=⇒ Pr

[
tsize(P∗) ≤ c5size(p

∗)α
′ (1+α)nβ

′′+(1+α)β ′
ln

(
1

ϵ

)]
< ϵ

where c4 and c5 are large enough constants. Note that α
′
is an arbitrary constant larger than 1, β ′ and

β ′′ are arbitrary constants larger than 0 and β respectively. Therefore, Tpoly is an (α∗, β∗)-Occam
term solver for any α∗ > 1 + α , β∗ > β . □

Lemma B.9 (Lemma 7.1). For any conditional domain D and program p ∈ (Pt ,Pc), there is a
program p ′ ∈ (Pt ,Pc)DL s.t. (1) p ′ is semantically equivalent to p on I, and (2) size(p ′) ≤ 2size(p)2.

Proof. Let P = {t1, . . . , tm } be the set of terms used in p. Without loss of generality, assume the

structure of p ′ is as the following:

if (c1) then t1 else if (c2) then t2 else . . . if (cm−1) then tm−1 else tm

For each if-term in p, we define its tree path as a sequence (pc1,k1), . . . , (pcn ,kn), where ci ∈ Pc
represents the if-conditions corresponding to this term from the top down, and ki ∈ {0, 1}
represents the if-branches taken by this term (0, 1 represent the then-branch and the else-branch
respectively). Let φ be a function mapping a path to a condition, which is defined as the following:

φ ((pc1,k1), . . . , (pcn ,kn)) B
(
andki=0 pci

)
and

(
andki=1 (not pci)

)
We construct the condition ci from the original programp. LetXi be the set of paths corresponding

to all usages of term ti . Then we construct the corresponding condition ci as orx ∈X φ (x).
Clearly, p ′ is semantically equivalent to p on the input space I. Besides, c1, . . . , cm−1 are all DNF

formulas, and thus p ′ ∈ (Pt ,Pc)DL. Let c
′
1
, . . . , c ′nc be all if-conditions used in p, li and ri be the

numbers of terms used in the then-branch and the else-branch of ci respectively. Then, size(p
′)

can be calculated in the following way:

• The total size of if-conditions ci is at most:

nc∑
i=1

(
li (size(c

′
i) + ⌈log2 N ⌉) + ri (size(c

′
i) + 2⌈log2 N ⌉)

)
− (m − 1)⌈log

2
N ⌉

where N is the number of grammar rules.

• The total size of if-operators is (m − 1)⌈log
2
N ⌉, the total size of if-terms is

∑m
i=1 size(ti).

Therefore, we have the following inequality:

size(p ′) ≤
nc∑
i=1

(
li (size(c

′
i) + ⌈log2 N ⌉) + ri (size(c

′
i) + 2⌈log2 N ⌉)

)
− (m − 1)⌈log

2
N ⌉ + (m − 1)⌈log

2
N ⌉ +

m∑
i=1

size(ti)

≤ *
,

nc∑
i=1

(li + ri)size(c
′
i) +

m∑
i=1

size(ti)+
-
+ 2⌈log

2
N ⌉

nc∑
i−1

(li + ri)

≤size(p) *
,

nc∑
i=1

size(c ′i) +
m∑
i=1

size(ti)+
-
+ size(p) · 2nc ⌈log2 N ⌉ ≤ 2size(p)2

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

Generalizable Synthesis through Unification 167:35

where 2nc ⌈log2 N ⌉ ≤ size(p) because each if-condition corresponds to an occurrence of itself and

an if-then-else operator: Both of them contribute to size(p) by at least ⌈log
2
N ⌉. □

Lemma B.10 (Lemma 7.2). C is an (α , β)-Occam solver on DNF(FC) ⇒ Upoly is an (4α ′, β)-Occam
unifier on FC for any α ′ > α , where DNF(FC) is defined as {(DNF(Pc), I′) | ((Pt ,Pc), I) ∈ FC , I

′ ⊆ I}.
C is a deterministic (α , β)-Occam solver on DNF(FC) ⇒ Upoly is a (4α , β)-Occam unifier on FC .

Proof. Let P = {t1, . . . , tm } be the term set and p∗ ∈ (P ,Pc) be the target program. Let

c∗
1
, . . . , c∗m−1 be the if-conditions for ti in the same way as the proof of Lemma 7.1. Specially,

if term ti is not used in p∗, ti is defined as false. Let s = max(tsize(P), size(p∗)). By the construc-

tion of c∗i , we have (1)
∑m−1

i=1 size(c∗i) ≤ O (s2), and (2) c∗
1
, . . . , c∗m−1 never overlap, i.e., ∀1 < i < j <

m,∀I ∈ I,¬(⟦c∗i ⟧(I) ∧ ⟦c
∗
j ⟧(I)).

Let Ti be the set of examples that are satisfied by term ti and are not satisfied by any term in

ti+1, . . . , tm . By Algorithm 2, the set of positive examples provided to synthesize c∗i must be a subset

ofTi . As c
∗
i may not satisfy all positive examples inTi , we construct conditions c

′
1
, . . . , c ′m−1 instead:

c ′i B c∗i or
(
or

i−1
j=1

(
or

nj
k=1

(
c∗j,k and

(
ti = tj

))))
where c∗i,1, . . . , c

∗
i,ni are the clauses used in condition c∗i , i.e., c

∗
i = ornij=1 c

∗
i, j . Clearly, c

′
i is still a DNF

formula, and c ′i satisfies all examples in Ti . Therefore, c
′
i is always a target condition for the PBE

task corresponding to c∗i . As in c ′
1
, . . . , c ′m−1, each clause c∗i, j in condition c∗i occurs at mostm − 1

times, each time with a comparison ti = tk . Therefore,
∑m−1

i=1 size(c ′i) = O (s4).

Let c1, . . . , cm−1 be the condition synthesized by C. Let ϵ be any constant in
(
0, 1

2

)
. For simplicity,

we abbreviate size(c ′i) as si . When C is an (α , β)-Occam solver, there exist constants c ′,γ ′ such that:

∀i ∈ [1,m − 1], Pr
[
size(ci) > c ′sαi |T |

β
ln
γ ′

(m − 1
ϵ

)]
≤

ϵ

m − 1

Therefore, with a probability of at least 1 − ϵ :

m−1∑
i=1

size(ci) ≤ c ′ |T |β lnγ
′
(m − 1

ϵ

) m−1∑
i=1

sαi ≤ c ′ |T |β
(
ln(m − 1) + ln

(
1

ϵ

))γ ′
*
,

m−1∑
i=1

si+
-

α

≤ c ′′ |T |βs4α ln(m − 1)γ
′

ln

(
1

ϵ

)γ ′
≤ cs4α

′

|T |β ln
(
1

ϵ

)γ
where c ′′ and c are large enough constants, γ = γ ′ and α ′ is a constant larger than α . Let p be

the program synthesized by Upoly. Then size(p) ≤
∑m−1

i=1 size(ci) + s . Therefore, when CCL is an

(α , β)-Occam solver, Upoly must be a (4α ′, β) unifier for any α ′ > α .
When CCL is a deterministic (α , β)-Occam solver, there exists constant c ′ such that:

∀i ∈ [1,m − 1], size(ci) ≤ c ′sαi |T |
β

At this time, we have the following bound on the total size of conditions c1, . . . , cm−1.

m−1∑
i=1

size(ci) ≤ c ′sαi |T |
β ≤ c ′ |T |β

m−1∑
i=1

sαi ≤ c ′ |T |β *
,

m−1∑
i=1

si+
-

α

≤ cs4α |T |β

where c is a large enough constant. Therefore, at this time, Upoly is a (4α , β)-Occam unifier. □

Lemma B.11 (Lemma 7.3). Given condition space Pc and PBE task T , let c∗ be the smallest valid
clause and c be the clause found by CCL. Then size(pc (c)) < 2size(pc (c∗)) (ln |T | + 1).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

167:36 Ruyi Ji, Jingtao Xia, Yingfei Xiong, and Zhenjiang Hu

Proof. Let L be the set of available literals, and L∗ = {l1, . . . , ln } be the set of literals satisfying
all positive examples in T . Then, c and c∗ must be subsets of L∗.

By Algorithm 2, while applying the greedy algorithm for set covering, we set the cost of a literal

as its size. Therefore, by the approximation ratio of this algorithm, we have:∑
l ∈c

size(l) < (ln |IN (T) | + 1)
∑
l ∈c∗

size(l) ≤ (ln |T | + 1)
∑
l ∈c∗

size(l)

By this inequality, we have:

size(pc (c)) = (|c | − 1) ⌈log
2
N ⌉ +

∑
l ∈c

size(l) < 2

∑
l ∈c

size(l)

< 2 (ln |T | + 1)
∑
l ∈c∗

size(l) < 2size(pc (c
∗)) (ln |T | + 1)

□

Corollary B.12 (Corollary 7.4). For any 0 < β < 1, CCL is an (1, β)-Occam solver on all possible
clause domains.

Proof. For any conditional space Pc and PBE task T , let c∗ be the target clause and c be the
clause synthesized by CCL. By Lemma 7.3, we have:

size(pc (c)) < 2(ln |T | + 1)size(pc (c
∗)) < csize(pc (c

∗)) |T |β

where c is a large enough constant and β is a constant in (0, 1). Therefore, for any 0 < β < 1, CCL

is an (1, β)-Occam solver. □

Lemma B.13 (Lemma 7.5). LetT be a PBE task and d be a DNF formula satisfying all examples inT :
• All clauses in d must be false on all negative examples in T , i.e., ∀c ∈ d, IN (T) ⊆ N (I(T), c).
• There exists a clause in d that is true on at least |d |−1 portion of positive examples in T , i.e.,
∃c ∈ d, |P (I(T), c) | ≥ |d |−1 |IP (T) |.

Proof. By the semantics of operator or, the first condition is obtained directly. Let c1, . . . , cm
be the clauses in d , and w1, . . . ,wm be the number of positive examples covered by each clause,

i.e.,wi B |P (I(T), ci) |. By the semantics of operator or, we know each positive example must be

covered by at least one clause. Therefore:

w1 + · · · +wm ≥ |IP (T) | =⇒ maxwi ≥ m−1 |IP (T) |

In this way, the second condition is obtained. □

Lemma B.14 (Lemma 7.7). For any 0 < β < 1, C is a (2, β)-Occam solver on DNF(FA
C).

Proof. Let s∗ be the value of variable s (Line 10 in Algorithm 4) when Upoly terminates. Let d∗

be the target DNF formula. When s ≥ 2size(pd (d
∗)), s ′ = s and the initial value of k is also s , we

make the following claim:

• Claim: In invocation Search(literals,T ,k, s), let d ′ be the set of clauses c∗ in d∗ satisfying
P (IP (T), c

∗) , ∅. If k ≥ |d ′ |, there must be a clause c ∈ Get(literals,T ,k) such that ∃c∗ ∈
d ′, P (IP (T), c

∗) ⊆ P (IP (T), c) ∧ size(pc (c)) ≤ 2s ln |T |.
• Proof: Let c∗ be the clause ind ′ that covers themost positive examples. Clearly, |P (IP (T), c

∗) | ≥
|d ′ |−1 |Ip (T) |. As k ≥ d ′, the largest clause in [c∗]IP (T) must be in R (IP (T),k, literals), and thus
this clause is found by Get(literals,T ,k).
Let c be the clause simplified from the largest clause in [c∗]IP (T) . By Lemma 7.3, size(pc (c)) <
2size(pc (c

∗)) (ln |T | + 1) ≤ 2s ln |T |.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

Generalizable Synthesis through Unification 167:37

By this claim, we obtain that in an iteration where s > 2size(pd (d
∗)), Search() can always find

a set of clauses. So, there are at most O (size(pd (d
∗))) clauses in the DNF formula synthesized by C,

and the size of each clause is at most O (size(pd (d
∗)) ln |T |). Therefore, the size of the synthesized

DNF formula is O ((size(pd (d
∗)))2 ln |T |), which directly implies that C is a (2, β)-Occam solver for

any 0 < β < 1.

□

Theorem B.15 (Theorem 7.8). For any 0 < β < 1, Upoly is a (8, β)-Occam unifier on FA
C .

Proof. Directly by Lemma 7.2 and Lemma 7.7. □

Theorem B.16 (Theorem 7.9). St is an (α , β)-Occam solver on T (FC) with β < 1

8
=⇒ PolyGen is

an (8(α ′ + 1), 8β ′)-Occam solver on FC for any α ′ > α , β < β ′ < 1

8
.

Proof. Directly by Theorem 5.7, Theorem 6.3 and Theorem 7.8. □

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 167. Publication date: October 2021.

	Abstract
	1 Introduction
	2 Related Work
	3 Motivating Example and Approach Overview
	3.1 Eusolver
	3.2 PolyGen

	4 Occam Learning
	4.1 Preliminaries: Programming by Example
	4.2 Occam Learning and Occam Solver

	5 Synthesis Through Unification
	5.1 Preliminaries: Synthesis through Unification
	5.2 Generalizability of STUN
	5.3 Generalizability of Eusolver

	6 Term Solver
	6.1 Overview
	6.2 Algorithm
	6.3 Properties of Tpoly

	7 Unifier
	7.1 Overview
	7.2 Condition Synthesis for Clauses
	7.3 Condition Synthesis for Disjunctive Normal Forms

	8 Implementation
	9 Evaluation
	9.1 Experimental Setup
	9.2 Exp1: Comparison of Approaches (RQ1)
	9.3 Exp2: Comparison of the Term Solver and the Unifier (RQ2)
	9.4 Exp3: Comparison of Values of c and c0 (RQ3)

	10 Conclusion
	References
	A Appendix: Occam Learning
	B Appendix: Proofs

