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ABSTRACT 1 INTRODUCTION

In this paper, we present the first benchmark for algorithm synthesis
from formal specification: ASAC. ASAC consists of 136 tasks cover-
ing a wide range of algorithmic paradigms and various difficulty
levels. Each task includes a formal specification and an efficiency
requirement, and the program synthesizer is expected to produce a
program that satisfies the formal specification and meets the effi-
ciency requirement. Our evaluation of two state-of-the-art (SOTA)
approaches in ASAC shows that ASAC exposes new challenges for
future research on program synthesis.

ASAC is available at https://auqwqua.github.io/ASACBenchmark,
and the demo video is available at https://youtu.be/JXV1eCdBh8U.
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Program synthesis is the task of automatically finding a program
that satisfies the user-provided specification. The specification
could be in the natural language form [1, 2] , or could also be
in formal logic [7]. In this paper, we focus on the latter because it
allows us to guarantee the correctness of the synthesized program.

However, the existing program synthesis benchmarks based on
formal specifications involve only small programs and writing such
programs may not be noticeably more difficult than writing the
formal specifications. Recently, some researchers have focused on
synthesizing algorithms from formal specifications [9, 15, 16, 21].
Synthesizing algorithms do not have this problem because algo-
rithms are generally difficult to contrive, and writing an algorithm
is noticeably more difficult than writing a formal specification for
the algorithm. However, so far all existing approaches were evalu-
ated in specialized problem sets that were covered by the respective
approaches, and the input formats of the problem sets are different.
There still lacks a unified benchmark.

To motivate research on algorithm synthesis, we present the first
unified benchmark for algorithm synthesis, ASAC. The build of the
benchmark is as follows. First, we collected 136 problems from the
National Olympiad in Informatics in Provinces (NOIP), one of the
world’s most participated national programming contests. Second,
we manually constructed the formal specification of the problems
above in MiniZinc[18], a widely used constraint modeling language
(See Section 4.2 for details). Third, we built the test suite and set
the time and memory limits for each task. The total construction
of the benchmark cost 410 man-hours.

For each task, a synthesizer is expected to synthesize a program
that conforms to the formal specification. Similarly to an algorithm
competition, the user can get the task score if and only if the synthe-
sized program passes all the tests within the time and memory limit.
Besides, we preserved the natural language descriptions, making
it possible to evaluate and compare tools that generate code from
natural language.

“Yingfei Xiong is the corresponding author.
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Souvenir Grouping
Problem description
The school student union let Lele be responsible for the New Year party souvenir distribution
work. To make the value of the souvenirs obtained by the students attending the party
relatively balanced, he should group the souvenirs according to the price, but each group
can only include two souvenirs at most, and the sum of the prices of each group of souvenirs
can not exceed a given integer. To ensure that all the souvenirs are distributed in as short a
time as possible, Lele wants to keep the number of groups to a minimum.
Your task is to write a program to find the minimum number of groups among all the
grouping schemes and outputs the minimum number of groups.

Input

The input file contains n+2 lines, 1 < n < 3 X 10%:

Line 1 includes an integer w, which is the upper bound on the sum of the souvenir prices
for each group, 80 < w < 200.

Line 2 is an integer n, which represents the total number of souvenirs purchased.

Lines 3 to n+2 each contain a positive integer Pi representing the price of the corresponding
souvenir, 5 < Pi < w.

Output
The output file has only one integer which is the minimum number of groups.

Figure 1: English Description

We evaluated two approaches to ASAC. First, we evaluated Syn-
Mem [21], a SOTA algorithm synthesizer focusing on dynamic
programming (DP) programs. SynMem solved 21.1% dynamic pro-
gramming tasks in ASAC. Second, we evaluated ChatGPT [2], a
SOTA neural model that supports generating programs from natu-
ral language descriptions or formal specifications. ChatGPT solves
8.8% of the tasks under both settings. These results indicate that
our benchmarks present a new challenge for future research.

2 RELATED WORK
2.1 General Program Synthesis Benchmarks

SyGusS (Syntax-Guided Synthesis) benchmarks are the public bench-
marks used in SyGus Competition [6] for program synthesis. Given
alogic specification and grammar rules, a synthesizer is expected to
provide a program conforming to the grammar rules and satisfying
the specification. Compared with ASAC, there are the following
differences. (i) The programs to be synthesized in SyGuS are small
expressions, which are significantly different from complete al-
gorithms in ASAC, which usually require tens of or hundreds of
lines. (ii) SyGuS does not have efficiency requirements and its prob-
lems are also simple programming tasks that do not require the
applications of algorithm paradigms.

2.2 Benchmarks for Synthesizing Algorithms
from Natural Language Descriptions

There are several benchmarks based on competitive programming
problems [5, 8, 11, 14, 17]. However, these benchmarks are based
on natural language descriptions but not formal specifications. The
inherent ambiguity of natural language makes it impossible to
prove the correctness of the generated programs. Though some
of the benchmarks [5, 17] are augmented with tests, tests specify
only partial behavior and cannot be used as a full specification.
ASAC provides both formal specifications and natural language
descriptions, allowing tools with different input formats to be used
and compared.

2.3 Benchmarks for Synthesizing Algorithms
from Logic Specifications
As mentioned before, though approaches for algorithm synthesis

have been proposed, the benchmarks used in their evaluation are
collected in an adhoc way. On the one hand, only those algorithms
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int: w;
int: n;
array[1..n] of int: P;

array[1..n] of var 1..n: setlIndex;

array[1..n] of var int: weight;

array[1..n] of var int: num;

constraint weight=[sum(LP[j] | j in 1..n where setIndex[jl==il) | i in 1..nl;
constraint num=[sum(L1 | j in 1..n where setIndex[jl]==i]) | i in 1..n];
constraint forall(number in num)(number <= 2);

constraint forall(mass in weight)(mass <= w);

var int: object = sum([1 | number in num where number > 01);
solve minimize object;

output["\(object\)"];

Listing 1: Specification

that fall into the target domain of the specific approach are covered.
On the other hand, different approaches use different input formats
(imperative [12, 13, 15] or functional programs [3] satisfying certain
requirements, or constrained logic specification [16, 21]), making
it difficult to cross-compare these approaches or combine them
for synthesizing a larger class of algorithms. Compared with them,
problems in ASCA are selected broadly from programming contests
and are specified uniformly in a logic specification language.

2.4 Benchmarks for Constraint Solving

There exist multiple constraint solving benchmarks, such as SMT-
COMP [22] and MiniZinc challenges [20]. Program synthesis bench-
marks aim to synthesize programs to solve a class of problems, while
constraint solving benchmarks aim to solve one problem instance
at a time. Nevertheless, constraint solving and program synthesis
both use logic specifications to describe the problems and the logic
specification language can be shared. The MiniZinc language we
use is originally designed for constraint solving, and is recently
used in the algorithm synthesis domain.

3 AN EXAMPLE

Let us begin with a sample task in our benchmark. This task is
relatively simple and is selected to ease understanding.

The English description of the sample task is shown in Figure 1.
It consists of three separate parts: the natural language description
of the problem, the input format, and the output format. To imple-
ment an efficient program for this problem, a greedy algorithm is
required.

The formal specification of this task is shown in Listing 1. This
task is formalized as an optimization problem, and the correspon-
dence between the specification and the natural language descrip-
tion is listed below.

e Lines 1-3 in our formal specification specify the input of the
problem, which consists of parameter declarations without the
var keyword. We use the same identifier as those in the input
format in our natural language descriptions. A concrete input is
provided by a MiniZinc data file in the standard dzn format, and
the synthesized program is expected to read the dzn file.
Lines 5-7 formalize the concepts. Variable “setIndex[i]” represents
the index of the group that includes the ith souvenir, variable
“weight[j]” represents the weighted sum for the jth group, and
“num[j]” represents the number of souvenirs in the jth group.
Lines 8-11 formalize the constraints in the problem. Every con-
straint has its corresponding sentence in the original description.
e Lines 13-14 formalize the objective function. The function returns
the number of non-empty groups, and our target is to minimize
the returned number.
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e Line 16 outputs the minimum possible objective value.

The goal of this sample task is to synthesize a program that
reads a concrete input from a dzn data file and produces an output
satisfying all constraints. Besides the MiniZinc specification, ASAC
also provides a test suite of 10 tests for this task and an efficiency
requirement including an expected time limit of 1 second and an
expected memory limit of 256MB. The synthesized program is
expected to pass all the tests within the time and memory limits.

Although the hardware configuration also affects the execution
time, the scale of the test data is large enough such that a program
whose complexity is higher than expected would hardly meet the
time limit no matter what hardware is used. For this problem, a
desirable greedy algorithm has the time complexity of O(nlogn),
but an exhaustive search has the time complexity of O(n!). The
difference in their execution time on the test data can be as large
as 10121200 times, which can hardly be offset by hardware. Fur-
thermore, the tests are also comprehensive such that an incorrect
program rarely passes the tests.

4 THE CONSTRUCTION OF ASAC
4.1 Task Selection

The problems in our benchmark are collected from competitive pro-
gramming contests NOIP. We choose problems from competitive
programming contests because (i) It is difficult to obtain tasks of
designing algorithms in real software development because most
of them are undocumented. (ii) Problems in competitive program-
ming are designed based on algorithmic paradigms widely used in
practice, such as D&C and dynamic programming, and thus can
well simulate problems in real software development. (iii) Problems
in competitive programming are well recognized as representative
by the industry and are commonly used in job interviews for pro-
grammers. (iv) These problems have already been used in existing
studies for evaluating program synthesizers based on LLMs.

Among these contests, we select problems from NOIP, which is
an annual competition in China for junior and senior high school
students. It has the following advantages. First, it is one of the
largest algorithm competitions for students (e.g. 24781 participants
in 2018.) Second, the competition is divided into junior and senior
groups, covering a wide range of difficulty levels. Third, competition
problems include various algorithms, such as dynamic program-
ming and greedy algorithms.

We collect 136 problems from the 10th to the 25th NOIP, involv-
ing a wide range of algorithmic paradigms and difficulty levels.

4.2 Formalization Language Selection

We selected the constraint modeling language MiniZinc to construct
the specification. The MiniZinc language is originally designed to
describe constraint satisfaction/optimization problems. It supports
separating inputs, where different inputs represent different con-
straint modeling problems that need to be solved.

We can also comprehend the MiniZinc language from another
perspective: when the input is unknown, the entire file describes a
function from an input to an output that meets constraints. This
essentially describes a programming problem. Therefore, we can use
the MiniZinc language to describe algorithm synthesis problems.

The use of the MiniZinc language has multiple benefits. First, the
specifications are precise so that it is possible to verify, manually or
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automatically, the correctness of the synthesized programs. Second,
the specifications are declarative. No algorithm has to be taken
into account when modeling the problem. Third, many real-world
problems can be naturally represented by constraint forms in a
declarative, high-level, and solver-independent way [4, 10].

4.3 Formalization

Based on the above choices, we formalize the problems as follows:

e For each problem, we manually construct its formal specification
based on the natural language description.

o Since each problem in algorithm contests has a test suite, we con-
vert the original test suite into the format of a MiniZinc data file.
We keep both versions of the test suite in our dataset, where the
original one is used when synthesizing from the natural language
description, and the converted one is used when synthesizing
from the formal specification.

Seven authors conducted the formalization work, and the total
time used was 410 man-hours. All the authors (i) are experienced
MiniZinc users and (ii) have good backgrounds in algorithms. Since
the same problem can be formalized in different ways, we define
the following rules to guide the formalization process:

o New concepts can be defined based on their standard definitions in
mathematical textbooks. For example, “prime number” is a concept
that does not exist in MiniZinc. We can define it as “a natural
number greater than 1 that is not a product of two smaller natural
numbers”.

o When a standard definition cannot be represented in MiniZinc, an
equivalent definition can be used. For example, one way to define
the prime number is “a natural number greater than 1 that is not
a product of any two natural numbers”. As the integers in MiniZinc
are always defined in a range, we cannot represent “a product
of any two natural numbers”, and thus we use the equivalent
definition in the previous paragraph.

o No manual optimization can be used. Yet another way to define
a prime number is to use the Ehrlich sieve method, which could
translate to an efficient decision procedure. We avoid such manual
optimization and stick to natural and simple definitions.

Furthermore, each time a new concept is introduced, its defini-
tion is discussed among the authors and is shared in the rest of the
formalization process.

We use a peer-review procedure to ensure the correctness of the
formalization. To reduce the workload, we first apply automated
inspection and then apply manual inspection.

e Automated inspection. For each problem r and each test input
i of r, we invoke Gecode [19], a widely-used constraint solver, on
our formalization of r and i to obtain the output, and then check
if the output is the same as the test oracle.

e Manual inspection. If Gecode does not produce an answer in
10 minutes for any test, we manually check if the specification of
the problem is correct. In total, 12 out of 136 specifications were
modified during this process.

4.4 Translation

To ease the use of our benchmark by a wide range of users, and to
support more types of works about code generation from natural
language, we recruit professional translators to translate the origi-
nal Chinese natural language descriptions into English. One author
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checked all the translations to ensure that there was no language
error caused by the lack of expertise.

5 BENCHMARK STATISTICS

In this section, we quantitatively measure the benchmark in three as-
pects. First, we measure the lengths of the problem descriptions and
specifications. The problem description in our benchmark contains
325 words on average and 822 words at maximum. A formal prob-
lem specification in MiniZinc contains 90 tokens on average and
399 tokens at maximum. These numbers indicate that understand-
ing the problem description / analyzing the problem specification
is a non-trivial task.

Second, we measure the difficulty of the problems in the bench-
mark. To measure difficulty, we refer to a large online community
for competitive programming, luogu.com.cn, where these prob-
lems are available and the users could submit their solutions to
test whether their solutions are correct and efficient enough. The
website reports the pass rate of each problem, which is defined
as the ratio of the number of users whose solutions are passed to
the number of users who submitted a solution. The pass rates of
problems in our benchmark are summarized in Table 1a. As we
can see, the pass rates follow a normal distribution, indicating the
coverage of a wide range of difficulty levels.

Third, we measure the algorithm paradigms and other knowl-
edge required to solve the problem. In luogu.com.cn, each problem
is associated with a set of labels, such as “dynamic programming”
or “mathematics”, indicating the algorithm paradigms and other
knowledge required to solve the problem. These labels are main-
tained by the administrators of the website, and users can comment
on whether the labels are accurate or not. Since the problems we col-
lected are among the most popular problems, we believe the labels
accurately reflect the required algorithm paradigms and knowledge.
On ASAC, a total of 70 labels are used, indicating that ASAC cov-
ers a wide variety of algorithms. We have listed the labels used
for more than 10 problems in our benchmark in Table 1b. As we
can see, the classic general algorithms paradigms, such as dynamic
programming and greedy methods, are widely used in ASAC.

(a) Pass Rate (b) Algorithm Paradigm
Pass Rate | Proportion Label Prob
0%-10% 0.7% DP 30
10%-20% 8.1% Mathematics 23
20%-30% 27.9% Greedy 21
30%-40% 30.1% Enumeration 17
40%-50% 20.6% Search 17
50%-60% 11.0% Sorting 16
60%-70% 1.5% Graph Theory 10

DP = dynamic programming

Table 1: Pass rate and algorithm paradigm of problems

6 EVALUATION

Among existing algorithm synthesis approaches, some [3, 12, 13, 15]
require imperative or functional programs as input, and thus it is
difficult to adapt them for ASAC, which uses logic specifications.
A series of approaches for synthesizing dynamic programming
algorithms [9, 16, 21] supports logic specification. SynMem [21]
is the SOTA approach among them and is the only one with a
publically available implementation. We run SynMem [21] on 19
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ChatGPT(N) | ChatGPT(S)
Label Task | Test | Task | Test
DP 0 3 3.0 6.33
Mathematics 8.7 12.6 9.0 20.9
Greedy 0 2.9 0 3.3
Enumeration 5.0 7.0 12.0 17.1
Sorting 5.9 7.6 12.0 20.0
Search 18.75 18.75 0 2.4
Graph Theory 0 2.0 0 2.0
Total 8.8 124 8.8 13.8

DP = dynamic programming

Table 2: The experimental results of ChatGPT(%)

DP tasks on the benchmark (30 tasks have DP labels, but 19 of
them have DP as the dominant algorithm). Finally, SynMem solved
4 of them (passing all the tests), which accounts for 21.1% of the
dynamic programming tasks and 2.9% of all the tasks.

Since ASAC also supports generating programs from natural
language descriptions, we also evaluate ChatGPT [2] on our bench-
mark. ChatGPT is also able to take the MiniZinc specification as text
input, so we evaluate both for each task. Please note that different
from algorithm synthesizers, ChatGPT does not ensure the correct-
ness of the generated program. We used the prompt “Please write a
program to solve the following problem (described by specification
in MiniZinc) below efficiently”, followed by the specification or
the English problem description. The sentence in parentheses is
removed for the English description case.

For the generated programs, we evaluated (1) the percentage
of tasks where the synthesized programs pass all the tests, and (2)
the percentage of tests where the synthesized programs pass on all
tasks (each task has 10 tests). When the second percentage is higher
than the first, either some generated programs are not fully correct,
or the efficiency does not satisfy the efficiency requirement.

The results are shown in Table 2. Each row corresponds to an
algorithm label in ASAC. Each column corresponds to a tool being
tested, where ChatGPT(N) means ChatGPT with natural language
input and ChatGPT(S) means ChatGPT with MiniZinc input. All
numbers are represented as pass rates in percentage. As we can see
from the table, ChatGPT solves 8.8% for both input formats.

All experiments in this section are conducted on Intel(R) Core(TM)
i7-9750H CPU @ 2.60GHz with 16GB memory. The version of Chat-
GPT is 3.5 accessed on Jan 16, 2023.

7 CONCLUSION

In this paper, we present the first benchmark for algorithm synthe-
sis, ASAC. ASAC consists of 136 problems, covering a wide range
of algorithmic paradigms and various difficulty levels. For each
task in ASAC, we constructed a formal specification based on the
original natural language description and translated the original
Chinese description into English. The construction of ASAC took
in a total of 410 man-hours. We conducted experiments on ASAC.
The results suggest that ASAC is challenging even for the SOTA
tools and calls for new research.
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